Metamath Proof Explorer


Theorem saliunclf

Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses saliunclf.1 𝑘 𝜑
saliunclf.2 𝑘 𝑆
saliunclf.3 𝑘 𝐾
saliunclf.4 ( 𝜑𝑆 ∈ SAlg )
saliunclf.5 ( 𝜑𝐾 ≼ ω )
saliunclf.6 ( ( 𝜑𝑘𝐾 ) → 𝐸𝑆 )
Assertion saliunclf ( 𝜑 𝑘𝐾 𝐸𝑆 )

Proof

Step Hyp Ref Expression
1 saliunclf.1 𝑘 𝜑
2 saliunclf.2 𝑘 𝑆
3 saliunclf.3 𝑘 𝐾
4 saliunclf.4 ( 𝜑𝑆 ∈ SAlg )
5 saliunclf.5 ( 𝜑𝐾 ≼ ω )
6 saliunclf.6 ( ( 𝜑𝑘𝐾 ) → 𝐸𝑆 )
7 1 6 ralrimia ( 𝜑 → ∀ 𝑘𝐾 𝐸𝑆 )
8 dfiun3g ( ∀ 𝑘𝐾 𝐸𝑆 𝑘𝐾 𝐸 = ran ( 𝑘𝐾𝐸 ) )
9 7 8 syl ( 𝜑 𝑘𝐾 𝐸 = ran ( 𝑘𝐾𝐸 ) )
10 eqid ( 𝑘𝐾𝐸 ) = ( 𝑘𝐾𝐸 )
11 1 3 2 10 6 rnmptssdff ( 𝜑 → ran ( 𝑘𝐾𝐸 ) ⊆ 𝑆 )
12 4 11 sselpwd ( 𝜑 → ran ( 𝑘𝐾𝐸 ) ∈ 𝒫 𝑆 )
13 3 rn1st ( 𝐾 ≼ ω → ran ( 𝑘𝐾𝐸 ) ≼ ω )
14 5 13 syl ( 𝜑 → ran ( 𝑘𝐾𝐸 ) ≼ ω )
15 4 12 14 salunicl ( 𝜑 ran ( 𝑘𝐾𝐸 ) ∈ 𝑆 )
16 9 15 eqeltrd ( 𝜑 𝑘𝐾 𝐸𝑆 )