Step |
Hyp |
Ref |
Expression |
1 |
|
saliunclf.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
saliunclf.2 |
⊢ Ⅎ 𝑘 𝑆 |
3 |
|
saliunclf.3 |
⊢ Ⅎ 𝑘 𝐾 |
4 |
|
saliunclf.4 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
5 |
|
saliunclf.5 |
⊢ ( 𝜑 → 𝐾 ≼ ω ) |
6 |
|
saliunclf.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 ∈ 𝑆 ) |
7 |
1 6
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 ) |
8 |
|
dfiun3g |
⊢ ( ∀ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ) |
10 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) = ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) |
11 |
1 3 2 10 6
|
rnmptssdff |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ⊆ 𝑆 ) |
12 |
4 11
|
sselpwd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ∈ 𝒫 𝑆 ) |
13 |
3
|
rn1st |
⊢ ( 𝐾 ≼ ω → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ≼ ω ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ≼ ω ) |
15 |
4 12 14
|
salunicl |
⊢ ( 𝜑 → ∪ ran ( 𝑘 ∈ 𝐾 ↦ 𝐸 ) ∈ 𝑆 ) |
16 |
9 15
|
eqeltrd |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 ) |