Metamath Proof Explorer


Theorem saliunclf

Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses saliunclf.1
|- F/ k ph
saliunclf.2
|- F/_ k S
saliunclf.3
|- F/_ k K
saliunclf.4
|- ( ph -> S e. SAlg )
saliunclf.5
|- ( ph -> K ~<_ _om )
saliunclf.6
|- ( ( ph /\ k e. K ) -> E e. S )
Assertion saliunclf
|- ( ph -> U_ k e. K E e. S )

Proof

Step Hyp Ref Expression
1 saliunclf.1
 |-  F/ k ph
2 saliunclf.2
 |-  F/_ k S
3 saliunclf.3
 |-  F/_ k K
4 saliunclf.4
 |-  ( ph -> S e. SAlg )
5 saliunclf.5
 |-  ( ph -> K ~<_ _om )
6 saliunclf.6
 |-  ( ( ph /\ k e. K ) -> E e. S )
7 1 6 ralrimia
 |-  ( ph -> A. k e. K E e. S )
8 dfiun3g
 |-  ( A. k e. K E e. S -> U_ k e. K E = U. ran ( k e. K |-> E ) )
9 7 8 syl
 |-  ( ph -> U_ k e. K E = U. ran ( k e. K |-> E ) )
10 eqid
 |-  ( k e. K |-> E ) = ( k e. K |-> E )
11 1 3 2 10 6 rnmptssdff
 |-  ( ph -> ran ( k e. K |-> E ) C_ S )
12 4 11 sselpwd
 |-  ( ph -> ran ( k e. K |-> E ) e. ~P S )
13 3 rn1st
 |-  ( K ~<_ _om -> ran ( k e. K |-> E ) ~<_ _om )
14 5 13 syl
 |-  ( ph -> ran ( k e. K |-> E ) ~<_ _om )
15 4 12 14 salunicl
 |-  ( ph -> U. ran ( k e. K |-> E ) e. S )
16 9 15 eqeltrd
 |-  ( ph -> U_ k e. K E e. S )