Step |
Hyp |
Ref |
Expression |
1 |
|
saliunclf.1 |
|- F/ k ph |
2 |
|
saliunclf.2 |
|- F/_ k S |
3 |
|
saliunclf.3 |
|- F/_ k K |
4 |
|
saliunclf.4 |
|- ( ph -> S e. SAlg ) |
5 |
|
saliunclf.5 |
|- ( ph -> K ~<_ _om ) |
6 |
|
saliunclf.6 |
|- ( ( ph /\ k e. K ) -> E e. S ) |
7 |
1 6
|
ralrimia |
|- ( ph -> A. k e. K E e. S ) |
8 |
|
dfiun3g |
|- ( A. k e. K E e. S -> U_ k e. K E = U. ran ( k e. K |-> E ) ) |
9 |
7 8
|
syl |
|- ( ph -> U_ k e. K E = U. ran ( k e. K |-> E ) ) |
10 |
|
eqid |
|- ( k e. K |-> E ) = ( k e. K |-> E ) |
11 |
1 3 2 10 6
|
rnmptssdff |
|- ( ph -> ran ( k e. K |-> E ) C_ S ) |
12 |
4 11
|
sselpwd |
|- ( ph -> ran ( k e. K |-> E ) e. ~P S ) |
13 |
3
|
rn1st |
|- ( K ~<_ _om -> ran ( k e. K |-> E ) ~<_ _om ) |
14 |
5 13
|
syl |
|- ( ph -> ran ( k e. K |-> E ) ~<_ _om ) |
15 |
4 12 14
|
salunicl |
|- ( ph -> U. ran ( k e. K |-> E ) e. S ) |
16 |
9 15
|
eqeltrd |
|- ( ph -> U_ k e. K E e. S ) |