Metamath Proof Explorer


Theorem saliuncl

Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses saliuncl.s
|- ( ph -> S e. SAlg )
saliuncl.kct
|- ( ph -> K ~<_ _om )
saliuncl.b
|- ( ( ph /\ k e. K ) -> E e. S )
Assertion saliuncl
|- ( ph -> U_ k e. K E e. S )

Proof

Step Hyp Ref Expression
1 saliuncl.s
 |-  ( ph -> S e. SAlg )
2 saliuncl.kct
 |-  ( ph -> K ~<_ _om )
3 saliuncl.b
 |-  ( ( ph /\ k e. K ) -> E e. S )
4 3 ralrimiva
 |-  ( ph -> A. k e. K E e. S )
5 dfiun3g
 |-  ( A. k e. K E e. S -> U_ k e. K E = U. ran ( k e. K |-> E ) )
6 4 5 syl
 |-  ( ph -> U_ k e. K E = U. ran ( k e. K |-> E ) )
7 eqid
 |-  ( k e. K |-> E ) = ( k e. K |-> E )
8 7 rnmptss
 |-  ( A. k e. K E e. S -> ran ( k e. K |-> E ) C_ S )
9 4 8 syl
 |-  ( ph -> ran ( k e. K |-> E ) C_ S )
10 1 9 ssexd
 |-  ( ph -> ran ( k e. K |-> E ) e. _V )
11 elpwg
 |-  ( ran ( k e. K |-> E ) e. _V -> ( ran ( k e. K |-> E ) e. ~P S <-> ran ( k e. K |-> E ) C_ S ) )
12 10 11 syl
 |-  ( ph -> ( ran ( k e. K |-> E ) e. ~P S <-> ran ( k e. K |-> E ) C_ S ) )
13 9 12 mpbird
 |-  ( ph -> ran ( k e. K |-> E ) e. ~P S )
14 1stcrestlem
 |-  ( K ~<_ _om -> ran ( k e. K |-> E ) ~<_ _om )
15 2 14 syl
 |-  ( ph -> ran ( k e. K |-> E ) ~<_ _om )
16 1 13 15 salunicl
 |-  ( ph -> U. ran ( k e. K |-> E ) e. S )
17 6 16 eqeltrd
 |-  ( ph -> U_ k e. K E e. S )