Step |
Hyp |
Ref |
Expression |
1 |
|
saliuncl.s |
|- ( ph -> S e. SAlg ) |
2 |
|
saliuncl.kct |
|- ( ph -> K ~<_ _om ) |
3 |
|
saliuncl.b |
|- ( ( ph /\ k e. K ) -> E e. S ) |
4 |
3
|
ralrimiva |
|- ( ph -> A. k e. K E e. S ) |
5 |
|
dfiun3g |
|- ( A. k e. K E e. S -> U_ k e. K E = U. ran ( k e. K |-> E ) ) |
6 |
4 5
|
syl |
|- ( ph -> U_ k e. K E = U. ran ( k e. K |-> E ) ) |
7 |
|
eqid |
|- ( k e. K |-> E ) = ( k e. K |-> E ) |
8 |
7
|
rnmptss |
|- ( A. k e. K E e. S -> ran ( k e. K |-> E ) C_ S ) |
9 |
4 8
|
syl |
|- ( ph -> ran ( k e. K |-> E ) C_ S ) |
10 |
1 9
|
ssexd |
|- ( ph -> ran ( k e. K |-> E ) e. _V ) |
11 |
|
elpwg |
|- ( ran ( k e. K |-> E ) e. _V -> ( ran ( k e. K |-> E ) e. ~P S <-> ran ( k e. K |-> E ) C_ S ) ) |
12 |
10 11
|
syl |
|- ( ph -> ( ran ( k e. K |-> E ) e. ~P S <-> ran ( k e. K |-> E ) C_ S ) ) |
13 |
9 12
|
mpbird |
|- ( ph -> ran ( k e. K |-> E ) e. ~P S ) |
14 |
|
1stcrestlem |
|- ( K ~<_ _om -> ran ( k e. K |-> E ) ~<_ _om ) |
15 |
2 14
|
syl |
|- ( ph -> ran ( k e. K |-> E ) ~<_ _om ) |
16 |
1 13 15
|
salunicl |
|- ( ph -> U. ran ( k e. K |-> E ) e. S ) |
17 |
6 16
|
eqeltrd |
|- ( ph -> U_ k e. K E e. S ) |