Metamath Proof Explorer


Theorem saliuncl

Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses saliuncl.s
|- ( ph -> S e. SAlg )
saliuncl.kct
|- ( ph -> K ~<_ _om )
saliuncl.b
|- ( ( ph /\ k e. K ) -> E e. S )
Assertion saliuncl
|- ( ph -> U_ k e. K E e. S )

Proof

Step Hyp Ref Expression
1 saliuncl.s
 |-  ( ph -> S e. SAlg )
2 saliuncl.kct
 |-  ( ph -> K ~<_ _om )
3 saliuncl.b
 |-  ( ( ph /\ k e. K ) -> E e. S )
4 nfv
 |-  F/ k ph
5 nfcv
 |-  F/_ k S
6 nfcv
 |-  F/_ k K
7 4 5 6 1 2 3 saliunclf
 |-  ( ph -> U_ k e. K E e. S )