Metamath Proof Explorer


Theorem rn1st

Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem , with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypothesis rn1st.1 _xB
Assertion rn1st BωranxBCω

Proof

Step Hyp Ref Expression
1 rn1st.1 _xB
2 ordom Ordω
3 reldom Rel
4 3 brrelex2i BωωV
5 elong ωVωOnOrdω
6 4 5 syl BωωOnOrdω
7 2 6 mpbiri BωωOn
8 ondomen ωOnBωBdomcard
9 7 8 mpancom BωBdomcard
10 eqid xBC=xBC
11 1 10 dmmptssf domxBCB
12 ssnum BdomcarddomxBCBdomxBCdomcard
13 9 11 12 sylancl BωdomxBCdomcard
14 funmpt FunxBC
15 funforn FunxBCxBC:domxBContoranxBC
16 14 15 mpbi xBC:domxBContoranxBC
17 fodomnum domxBCdomcardxBC:domxBContoranxBCranxBCdomxBC
18 13 16 17 mpisyl BωranxBCdomxBC
19 ctex BωBV
20 ssdomg BVdomxBCBdomxBCB
21 19 11 20 mpisyl BωdomxBCB
22 domtr domxBCBBωdomxBCω
23 21 22 mpancom BωdomxBCω
24 domtr ranxBCdomxBCdomxBCωranxBCω
25 18 23 24 syl2anc BωranxBCω