Metamath Proof Explorer


Theorem fodomnum

Description: A version of fodom that doesn't require the Axiom of Choice ax-ac . (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fodomnum AdomcardF:AontoBBA

Proof

Step Hyp Ref Expression
1 focdmex AdomcardF:AontoBBV
2 1 com12 F:AontoBAdomcardBV
3 numacn BVAdomcardAAC_B
4 2 3 syli F:AontoBAdomcardAAC_B
5 4 com12 AdomcardF:AontoBAAC_B
6 fodomacn AAC_BF:AontoBBA
7 5 6 syli AdomcardF:AontoBBA