Metamath Proof Explorer


Theorem focdmex

Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004)

Ref Expression
Assertion focdmex ACF:AontoBBV

Proof

Step Hyp Ref Expression
1 fofun F:AontoBFunF
2 funrnex domFCFunFranFV
3 1 2 syl5com F:AontoBdomFCranFV
4 fof F:AontoBF:AB
5 4 fdmd F:AontoBdomF=A
6 5 eleq1d F:AontoBdomFCAC
7 forn F:AontoBranF=B
8 7 eleq1d F:AontoBranFVBV
9 3 6 8 3imtr3d F:AontoBACBV
10 9 com12 ACF:AontoBBV