| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fofun | 
							 |-  ( F : A -onto-> B -> Fun F )  | 
						
						
							| 2 | 
							
								
							 | 
							funrnex | 
							 |-  ( dom F e. C -> ( Fun F -> ran F e. _V ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl5com | 
							 |-  ( F : A -onto-> B -> ( dom F e. C -> ran F e. _V ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fof | 
							 |-  ( F : A -onto-> B -> F : A --> B )  | 
						
						
							| 5 | 
							
								4
							 | 
							fdmd | 
							 |-  ( F : A -onto-> B -> dom F = A )  | 
						
						
							| 6 | 
							
								5
							 | 
							eleq1d | 
							 |-  ( F : A -onto-> B -> ( dom F e. C <-> A e. C ) )  | 
						
						
							| 7 | 
							
								
							 | 
							forn | 
							 |-  ( F : A -onto-> B -> ran F = B )  | 
						
						
							| 8 | 
							
								7
							 | 
							eleq1d | 
							 |-  ( F : A -onto-> B -> ( ran F e. _V <-> B e. _V ) )  | 
						
						
							| 9 | 
							
								3 6 8
							 | 
							3imtr3d | 
							 |-  ( F : A -onto-> B -> ( A e. C -> B e. _V ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							com12 | 
							 |-  ( A e. C -> ( F : A -onto-> B -> B e. _V ) )  |