| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  | 
						
							| 2 | 1 | prid1 |  | 
						
							| 3 | 2 | a1i |  | 
						
							| 4 |  | uniprg |  | 
						
							| 5 | 1 4 | mpan |  | 
						
							| 6 |  | 0un |  | 
						
							| 7 | 5 6 | eqtrdi |  | 
						
							| 8 | 7 | difeq1d |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | difeq2 |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 |  | dif0 |  | 
						
							| 13 | 11 12 | eqtrdi |  | 
						
							| 14 |  | prid2g |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 13 15 | eqeltrd |  | 
						
							| 17 | 16 | adantlr |  | 
						
							| 18 |  | neqne |  | 
						
							| 19 |  | elprn1 |  | 
						
							| 20 | 18 19 | sylan2 |  | 
						
							| 21 | 20 | adantll |  | 
						
							| 22 |  | difeq2 |  | 
						
							| 23 |  | difid |  | 
						
							| 24 | 22 23 | eqtrdi |  | 
						
							| 25 | 2 | a1i |  | 
						
							| 26 | 24 25 | eqeltrd |  | 
						
							| 27 | 21 26 | syl |  | 
						
							| 28 | 17 27 | pm2.61dan |  | 
						
							| 29 | 9 28 | eqeltrd |  | 
						
							| 30 | 29 | ralrimiva |  | 
						
							| 31 |  | elpwi |  | 
						
							| 32 | 31 | unissd |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 7 | adantr |  | 
						
							| 35 | 33 34 | sseqtrd |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | elssuni |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 36 38 | eqssd |  | 
						
							| 40 | 14 | ad2antrr |  | 
						
							| 41 | 39 40 | eqeltrd |  | 
						
							| 42 |  | id |  | 
						
							| 43 |  | pwpr |  | 
						
							| 44 | 42 43 | eleqtrdi |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 45 | adantll |  | 
						
							| 47 |  | snidg |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 |  | id |  | 
						
							| 50 | 49 | eqcomd |  | 
						
							| 51 | 50 | adantl |  | 
						
							| 52 | 48 51 | eleqtrd |  | 
						
							| 53 | 52 | adantlr |  | 
						
							| 54 |  | id |  | 
						
							| 55 | 54 | ad2antrr |  | 
						
							| 56 |  | neqne |  | 
						
							| 57 |  | elprn1 |  | 
						
							| 58 | 56 57 | sylan2 |  | 
						
							| 59 | 58 | adantll |  | 
						
							| 60 | 14 | adantr |  | 
						
							| 61 |  | id |  | 
						
							| 62 | 61 | eqcomd |  | 
						
							| 63 | 62 | adantl |  | 
						
							| 64 | 60 63 | eleqtrd |  | 
						
							| 65 | 55 59 64 | syl2anc |  | 
						
							| 66 | 53 65 | pm2.61dan |  | 
						
							| 67 | 66 | stoic1a |  | 
						
							| 68 | 67 | adantlr |  | 
						
							| 69 |  | elunnel2 |  | 
						
							| 70 | 46 68 69 | syl2anc |  | 
						
							| 71 |  | unieq |  | 
						
							| 72 |  | uni0 |  | 
						
							| 73 | 71 72 | eqtrdi |  | 
						
							| 74 | 73 | adantl |  | 
						
							| 75 |  | elprn1 |  | 
						
							| 76 | 18 75 | sylan2 |  | 
						
							| 77 |  | unieq |  | 
						
							| 78 |  | unisn0 |  | 
						
							| 79 | 77 78 | eqtrdi |  | 
						
							| 80 | 76 79 | syl |  | 
						
							| 81 | 74 80 | pm2.61dan |  | 
						
							| 82 | 70 81 | syl |  | 
						
							| 83 | 2 | a1i |  | 
						
							| 84 | 82 83 | eqeltrd |  | 
						
							| 85 | 41 84 | pm2.61dan |  | 
						
							| 86 | 85 | a1d |  | 
						
							| 87 | 86 | ralrimiva |  | 
						
							| 88 |  | prex |  | 
						
							| 89 |  | issal |  | 
						
							| 90 | 88 89 | mp1i |  | 
						
							| 91 | 3 30 87 90 | mpbir3and |  |