Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|
2 |
1
|
prid1 |
|
3 |
2
|
a1i |
|
4 |
|
uniprg |
|
5 |
1 4
|
mpan |
|
6 |
|
0un |
|
7 |
5 6
|
eqtrdi |
|
8 |
7
|
difeq1d |
|
9 |
8
|
adantr |
|
10 |
|
difeq2 |
|
11 |
10
|
adantl |
|
12 |
|
dif0 |
|
13 |
11 12
|
eqtrdi |
|
14 |
|
prid2g |
|
15 |
14
|
adantr |
|
16 |
13 15
|
eqeltrd |
|
17 |
16
|
adantlr |
|
18 |
|
neqne |
|
19 |
|
elprn1 |
|
20 |
18 19
|
sylan2 |
|
21 |
20
|
adantll |
|
22 |
|
difeq2 |
|
23 |
|
difid |
|
24 |
22 23
|
eqtrdi |
|
25 |
2
|
a1i |
|
26 |
24 25
|
eqeltrd |
|
27 |
21 26
|
syl |
|
28 |
17 27
|
pm2.61dan |
|
29 |
9 28
|
eqeltrd |
|
30 |
29
|
ralrimiva |
|
31 |
|
elpwi |
|
32 |
31
|
unissd |
|
33 |
32
|
adantl |
|
34 |
7
|
adantr |
|
35 |
33 34
|
sseqtrd |
|
36 |
35
|
adantr |
|
37 |
|
elssuni |
|
38 |
37
|
adantl |
|
39 |
36 38
|
eqssd |
|
40 |
14
|
ad2antrr |
|
41 |
39 40
|
eqeltrd |
|
42 |
|
id |
|
43 |
|
pwpr |
|
44 |
42 43
|
eleqtrdi |
|
45 |
44
|
adantr |
|
46 |
45
|
adantll |
|
47 |
|
snidg |
|
48 |
47
|
adantr |
|
49 |
|
id |
|
50 |
49
|
eqcomd |
|
51 |
50
|
adantl |
|
52 |
48 51
|
eleqtrd |
|
53 |
52
|
adantlr |
|
54 |
|
id |
|
55 |
54
|
ad2antrr |
|
56 |
|
neqne |
|
57 |
|
elprn1 |
|
58 |
56 57
|
sylan2 |
|
59 |
58
|
adantll |
|
60 |
14
|
adantr |
|
61 |
|
id |
|
62 |
61
|
eqcomd |
|
63 |
62
|
adantl |
|
64 |
60 63
|
eleqtrd |
|
65 |
55 59 64
|
syl2anc |
|
66 |
53 65
|
pm2.61dan |
|
67 |
66
|
stoic1a |
|
68 |
67
|
adantlr |
|
69 |
|
elunnel2 |
|
70 |
46 68 69
|
syl2anc |
|
71 |
|
unieq |
|
72 |
|
uni0 |
|
73 |
71 72
|
eqtrdi |
|
74 |
73
|
adantl |
|
75 |
|
elprn1 |
|
76 |
18 75
|
sylan2 |
|
77 |
|
unieq |
|
78 |
|
unisn0 |
|
79 |
77 78
|
eqtrdi |
|
80 |
76 79
|
syl |
|
81 |
74 80
|
pm2.61dan |
|
82 |
70 81
|
syl |
|
83 |
2
|
a1i |
|
84 |
82 83
|
eqeltrd |
|
85 |
41 84
|
pm2.61dan |
|
86 |
85
|
a1d |
|
87 |
86
|
ralrimiva |
|
88 |
|
prex |
|
89 |
|
issal |
|
90 |
88 89
|
mp1i |
|
91 |
3 30 87 90
|
mpbir3and |
|