Metamath Proof Explorer


Theorem elprn1

Description: A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elprn1 ABCABA=C

Proof

Step Hyp Ref Expression
1 neneq AB¬A=B
2 1 adantl ABCAB¬A=B
3 elpri ABCA=BA=C
4 3 adantr ABCABA=BA=C
5 4 ord ABCAB¬A=BA=C
6 2 5 mpd ABCABA=C