Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∩ 𝐹 ) = ( 𝐸 ∩ 𝐹 ) ) |
2 |
|
inss1 |
⊢ ( 𝐸 ∩ 𝐹 ) ⊆ 𝐸 |
3 |
2
|
a1i |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( 𝐸 ∩ 𝐹 ) ⊆ 𝐸 ) |
4 |
|
elssuni |
⊢ ( 𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆 ) |
5 |
4
|
adantl |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → 𝐸 ⊆ ∪ 𝑆 ) |
6 |
3 5
|
sstrd |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( 𝐸 ∩ 𝐹 ) ⊆ ∪ 𝑆 ) |
7 |
|
dfss4 |
⊢ ( ( 𝐸 ∩ 𝐹 ) ⊆ ∪ 𝑆 ↔ ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ ( 𝐸 ∩ 𝐹 ) ) ) = ( 𝐸 ∩ 𝐹 ) ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ ( 𝐸 ∩ 𝐹 ) ) ) = ( 𝐸 ∩ 𝐹 ) ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( 𝐸 ∩ 𝐹 ) = ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ ( 𝐸 ∩ 𝐹 ) ) ) ) |
10 |
9
|
3adant3 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∩ 𝐹 ) = ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ ( 𝐸 ∩ 𝐹 ) ) ) ) |
11 |
|
difindi |
⊢ ( ∪ 𝑆 ∖ ( 𝐸 ∩ 𝐹 ) ) = ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) |
12 |
11
|
difeq2i |
⊢ ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ ( 𝐸 ∩ 𝐹 ) ) ) = ( ∪ 𝑆 ∖ ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) ) |
13 |
12
|
a1i |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ ( 𝐸 ∩ 𝐹 ) ) ) = ( ∪ 𝑆 ∖ ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) ) ) |
14 |
1 10 13
|
3eqtrd |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∩ 𝐹 ) = ( ∪ 𝑆 ∖ ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) ) ) |
15 |
|
simp1 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝑆 ∈ SAlg ) |
16 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
18 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐹 ) ∈ 𝑆 ) |
19 |
18
|
3adant2 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐹 ) ∈ 𝑆 ) |
20 |
|
saluncl |
⊢ ( ( 𝑆 ∈ SAlg ∧ ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ∧ ( ∪ 𝑆 ∖ 𝐹 ) ∈ 𝑆 ) → ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) ∈ 𝑆 ) |
21 |
15 17 19 20
|
syl3anc |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) ∈ 𝑆 ) |
22 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) ∈ 𝑆 ) → ( ∪ 𝑆 ∖ ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) ) ∈ 𝑆 ) |
23 |
15 21 22
|
syl2anc |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ ( ( ∪ 𝑆 ∖ 𝐸 ) ∪ ( ∪ 𝑆 ∖ 𝐹 ) ) ) ∈ 𝑆 ) |
24 |
14 23
|
eqeltrd |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∩ 𝐹 ) ∈ 𝑆 ) |