Metamath Proof Explorer


Theorem saliincl

Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses saliincl.s φ S SAlg
saliincl.kct φ K ω
saliincl.kn0 φ K
saliincl.e φ k K E S
Assertion saliincl φ k K E S

Proof

Step Hyp Ref Expression
1 saliincl.s φ S SAlg
2 saliincl.kct φ K ω
3 saliincl.kn0 φ K
4 saliincl.e φ k K E S
5 elssuni E S E S
6 4 5 syl φ k K E S
7 df-ss E S E S = E
8 6 7 sylib φ k K E S = E
9 8 eqcomd φ k K E = E S
10 incom E S = S E
11 10 a1i φ k K E S = S E
12 dfin4 S E = S S E
13 12 a1i φ k K S E = S S E
14 9 11 13 3eqtrd φ k K E = S S E
15 14 iineq2dv φ k K E = k K S S E
16 iindif2 K k K S S E = S k K S E
17 3 16 syl φ k K S S E = S k K S E
18 15 17 eqtrd φ k K E = S k K S E
19 1 adantr φ k K S SAlg
20 saldifcl S SAlg E S S E S
21 19 4 20 syl2anc φ k K S E S
22 1 2 21 saliuncl φ k K S E S
23 saldifcl S SAlg k K S E S S k K S E S
24 1 22 23 syl2anc φ S k K S E S
25 18 24 eqeltrd φ k K E S