Metamath Proof Explorer


Theorem saldifcl2

Description: The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saldifcl2 S SAlg E S F S E F S

Proof

Step Hyp Ref Expression
1 indif2 E S F = E S F
2 1 a1i S SAlg E S F S E S F = E S F
3 elssuni E S E S
4 df-ss E S E S = E
5 3 4 sylib E S E S = E
6 5 difeq1d E S E S F = E F
7 6 3ad2ant2 S SAlg E S F S E S F = E F
8 2 7 eqtr2d S SAlg E S F S E F = E S F
9 simp1 S SAlg E S F S S SAlg
10 simp2 S SAlg E S F S E S
11 saldifcl S SAlg F S S F S
12 11 3adant2 S SAlg E S F S S F S
13 salincl S SAlg E S S F S E S F S
14 9 10 12 13 syl3anc S SAlg E S F S E S F S
15 8 14 eqeltrd S SAlg E S F S E F S