Step |
Hyp |
Ref |
Expression |
1 |
|
indif2 |
⊢ ( 𝐸 ∩ ( ∪ 𝑆 ∖ 𝐹 ) ) = ( ( 𝐸 ∩ ∪ 𝑆 ) ∖ 𝐹 ) |
2 |
1
|
a1i |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∩ ( ∪ 𝑆 ∖ 𝐹 ) ) = ( ( 𝐸 ∩ ∪ 𝑆 ) ∖ 𝐹 ) ) |
3 |
|
elssuni |
⊢ ( 𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆 ) |
4 |
|
df-ss |
⊢ ( 𝐸 ⊆ ∪ 𝑆 ↔ ( 𝐸 ∩ ∪ 𝑆 ) = 𝐸 ) |
5 |
3 4
|
sylib |
⊢ ( 𝐸 ∈ 𝑆 → ( 𝐸 ∩ ∪ 𝑆 ) = 𝐸 ) |
6 |
5
|
difeq1d |
⊢ ( 𝐸 ∈ 𝑆 → ( ( 𝐸 ∩ ∪ 𝑆 ) ∖ 𝐹 ) = ( 𝐸 ∖ 𝐹 ) ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ( 𝐸 ∩ ∪ 𝑆 ) ∖ 𝐹 ) = ( 𝐸 ∖ 𝐹 ) ) |
8 |
2 7
|
eqtr2d |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∖ 𝐹 ) = ( 𝐸 ∩ ( ∪ 𝑆 ∖ 𝐹 ) ) ) |
9 |
|
simp1 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝑆 ∈ SAlg ) |
10 |
|
simp2 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → 𝐸 ∈ 𝑆 ) |
11 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐹 ) ∈ 𝑆 ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐹 ) ∈ 𝑆 ) |
13 |
|
salincl |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ ( ∪ 𝑆 ∖ 𝐹 ) ∈ 𝑆 ) → ( 𝐸 ∩ ( ∪ 𝑆 ∖ 𝐹 ) ) ∈ 𝑆 ) |
14 |
9 10 12 13
|
syl3anc |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∩ ( ∪ 𝑆 ∖ 𝐹 ) ) ∈ 𝑆 ) |
15 |
8 14
|
eqeltrd |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( 𝐸 ∖ 𝐹 ) ∈ 𝑆 ) |