Metamath Proof Explorer


Theorem saliincl

Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses saliincl.s
|- ( ph -> S e. SAlg )
saliincl.kct
|- ( ph -> K ~<_ _om )
saliincl.kn0
|- ( ph -> K =/= (/) )
saliincl.e
|- ( ( ph /\ k e. K ) -> E e. S )
Assertion saliincl
|- ( ph -> |^|_ k e. K E e. S )

Proof

Step Hyp Ref Expression
1 saliincl.s
 |-  ( ph -> S e. SAlg )
2 saliincl.kct
 |-  ( ph -> K ~<_ _om )
3 saliincl.kn0
 |-  ( ph -> K =/= (/) )
4 saliincl.e
 |-  ( ( ph /\ k e. K ) -> E e. S )
5 nfv
 |-  F/ k ph
6 nfcv
 |-  F/_ k S
7 nfcv
 |-  F/_ k K
8 5 6 7 1 2 3 4 saliinclf
 |-  ( ph -> |^|_ k e. K E e. S )