Metamath Proof Explorer


Theorem saliinclf

Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses saliinclf.1 k φ
saliinclf.2 _ k S
saliinclf.3 _ k K
saliinclf.4 φ S SAlg
saliinclf.5 φ K ω
saliinclf.6 φ K
saliinclf.7 φ k K E S
Assertion saliinclf φ k K E S

Proof

Step Hyp Ref Expression
1 saliinclf.1 k φ
2 saliinclf.2 _ k S
3 saliinclf.3 _ k K
4 saliinclf.4 φ S SAlg
5 saliinclf.5 φ K ω
6 saliinclf.6 φ K
7 saliinclf.7 φ k K E S
8 incom E S = S E
9 elssuni E S E S
10 7 9 syl φ k K E S
11 dfss2 E S E S = E
12 10 11 sylib φ k K E S = E
13 dfin4 S E = S S E
14 13 a1i φ k K S E = S S E
15 8 12 14 3eqtr3a φ k K E = S S E
16 1 15 iineq2d φ k K E = k K S S E
17 2 nfuni _ k S
18 3 17 iindif2f K k K S S E = S k K S E
19 6 18 syl φ k K S S E = S k K S E
20 16 19 eqtrd φ k K E = S k K S E
21 saldifcl S SAlg E S S E S
22 4 7 21 syl2an2r φ k K S E S
23 1 2 3 4 5 22 saliunclf φ k K S E S
24 saldifcl S SAlg k K S E S S k K S E S
25 4 23 24 syl2anc φ S k K S E S
26 20 25 eqeltrd φ k K E S