| Step |
Hyp |
Ref |
Expression |
| 1 |
|
saliinclf.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
saliinclf.2 |
⊢ Ⅎ 𝑘 𝑆 |
| 3 |
|
saliinclf.3 |
⊢ Ⅎ 𝑘 𝐾 |
| 4 |
|
saliinclf.4 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 5 |
|
saliinclf.5 |
⊢ ( 𝜑 → 𝐾 ≼ ω ) |
| 6 |
|
saliinclf.6 |
⊢ ( 𝜑 → 𝐾 ≠ ∅ ) |
| 7 |
|
saliinclf.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 ∈ 𝑆 ) |
| 8 |
|
incom |
⊢ ( 𝐸 ∩ ∪ 𝑆 ) = ( ∪ 𝑆 ∩ 𝐸 ) |
| 9 |
|
elssuni |
⊢ ( 𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆 ) |
| 10 |
7 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 ⊆ ∪ 𝑆 ) |
| 11 |
|
dfss2 |
⊢ ( 𝐸 ⊆ ∪ 𝑆 ↔ ( 𝐸 ∩ ∪ 𝑆 ) = 𝐸 ) |
| 12 |
10 11
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( 𝐸 ∩ ∪ 𝑆 ) = 𝐸 ) |
| 13 |
|
dfin4 |
⊢ ( ∪ 𝑆 ∩ 𝐸 ) = ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( ∪ 𝑆 ∩ 𝐸 ) = ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
| 15 |
8 12 14
|
3eqtr3a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐸 = ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
| 16 |
1 15
|
iineq2d |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ∩ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
| 17 |
2
|
nfuni |
⊢ Ⅎ 𝑘 ∪ 𝑆 |
| 18 |
3 17
|
iindif2f |
⊢ ( 𝐾 ≠ ∅ → ∩ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) = ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) = ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
| 20 |
16 19
|
eqtrd |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
| 21 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
| 22 |
4 7 21
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
| 23 |
1 2 3 4 5 22
|
saliunclf |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
| 24 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) → ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ∈ 𝑆 ) |
| 25 |
4 23 24
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 ( ∪ 𝑆 ∖ 𝐸 ) ) ∈ 𝑆 ) |
| 26 |
20 25
|
eqeltrd |
⊢ ( 𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 ) |