Metamath Proof Explorer


Theorem salgenss

Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of Fremlin1 p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex , where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salgenss.x
|- ( ph -> X e. V )
salgenss.g
|- G = ( SalGen ` X )
salgenss.s
|- ( ph -> S e. SAlg )
salgenss.i
|- ( ph -> X C_ S )
salgenss.u
|- ( ph -> U. S = U. X )
Assertion salgenss
|- ( ph -> G C_ S )

Proof

Step Hyp Ref Expression
1 salgenss.x
 |-  ( ph -> X e. V )
2 salgenss.g
 |-  G = ( SalGen ` X )
3 salgenss.s
 |-  ( ph -> S e. SAlg )
4 salgenss.i
 |-  ( ph -> X C_ S )
5 salgenss.u
 |-  ( ph -> U. S = U. X )
6 2 a1i
 |-  ( ph -> G = ( SalGen ` X ) )
7 salgenval
 |-  ( X e. V -> ( SalGen ` X ) = |^| { s e. SAlg | ( U. s = U. X /\ X C_ s ) } )
8 1 7 syl
 |-  ( ph -> ( SalGen ` X ) = |^| { s e. SAlg | ( U. s = U. X /\ X C_ s ) } )
9 6 8 eqtrd
 |-  ( ph -> G = |^| { s e. SAlg | ( U. s = U. X /\ X C_ s ) } )
10 5 4 jca
 |-  ( ph -> ( U. S = U. X /\ X C_ S ) )
11 3 10 jca
 |-  ( ph -> ( S e. SAlg /\ ( U. S = U. X /\ X C_ S ) ) )
12 unieq
 |-  ( s = S -> U. s = U. S )
13 12 eqeq1d
 |-  ( s = S -> ( U. s = U. X <-> U. S = U. X ) )
14 sseq2
 |-  ( s = S -> ( X C_ s <-> X C_ S ) )
15 13 14 anbi12d
 |-  ( s = S -> ( ( U. s = U. X /\ X C_ s ) <-> ( U. S = U. X /\ X C_ S ) ) )
16 15 elrab
 |-  ( S e. { s e. SAlg | ( U. s = U. X /\ X C_ s ) } <-> ( S e. SAlg /\ ( U. S = U. X /\ X C_ S ) ) )
17 11 16 sylibr
 |-  ( ph -> S e. { s e. SAlg | ( U. s = U. X /\ X C_ s ) } )
18 intss1
 |-  ( S e. { s e. SAlg | ( U. s = U. X /\ X C_ s ) } -> |^| { s e. SAlg | ( U. s = U. X /\ X C_ s ) } C_ S )
19 17 18 syl
 |-  ( ph -> |^| { s e. SAlg | ( U. s = U. X /\ X C_ s ) } C_ S )
20 9 19 eqsstrd
 |-  ( ph -> G C_ S )