Metamath Proof Explorer


Theorem 0sald

Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis 0sald.1 ( 𝜑𝑆 ∈ SAlg )
Assertion 0sald ( 𝜑 → ∅ ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 0sald.1 ( 𝜑𝑆 ∈ SAlg )
2 0sal ( 𝑆 ∈ SAlg → ∅ ∈ 𝑆 )
3 1 2 syl ( 𝜑 → ∅ ∈ 𝑆 )