Metamath Proof Explorer


Theorem iooborel

Description: An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iooborel.1 𝐽 = ( topGen ‘ ran (,) )
iooborel.2 𝐵 = ( SalGen ‘ 𝐽 )
Assertion iooborel ( 𝐴 (,) 𝐶 ) ∈ 𝐵

Proof

Step Hyp Ref Expression
1 iooborel.1 𝐽 = ( topGen ‘ ran (,) )
2 iooborel.2 𝐵 = ( SalGen ‘ 𝐽 )
3 retop ( topGen ‘ ran (,) ) ∈ Top
4 1 3 eqeltri 𝐽 ∈ Top
5 2 sssalgen ( 𝐽 ∈ Top → 𝐽𝐵 )
6 4 5 ax-mp 𝐽𝐵
7 iooretop ( 𝐴 (,) 𝐶 ) ∈ ( topGen ‘ ran (,) )
8 7 1 eleqtrri ( 𝐴 (,) 𝐶 ) ∈ 𝐽
9 6 8 sselii ( 𝐴 (,) 𝐶 ) ∈ 𝐵