Description: An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iooborel.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| iooborel.2 | ⊢ 𝐵 = ( SalGen ‘ 𝐽 ) | ||
| Assertion | iooborel | ⊢ ( 𝐴 (,) 𝐶 ) ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooborel.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 2 | iooborel.2 | ⊢ 𝐵 = ( SalGen ‘ 𝐽 ) | |
| 3 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 4 | 1 3 | eqeltri | ⊢ 𝐽 ∈ Top |
| 5 | 2 | sssalgen | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ 𝐵 ) |
| 6 | 4 5 | ax-mp | ⊢ 𝐽 ⊆ 𝐵 |
| 7 | iooretop | ⊢ ( 𝐴 (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) | |
| 8 | 7 1 | eleqtrri | ⊢ ( 𝐴 (,) 𝐶 ) ∈ 𝐽 |
| 9 | 6 8 | sselii | ⊢ ( 𝐴 (,) 𝐶 ) ∈ 𝐵 |