Metamath Proof Explorer


Theorem salincld

Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salincld.1 ( 𝜑𝑆 ∈ SAlg )
salincld.2 ( 𝜑𝐸𝑆 )
salincld.3 ( 𝜑𝐹𝑆 )
Assertion salincld ( 𝜑 → ( 𝐸𝐹 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 salincld.1 ( 𝜑𝑆 ∈ SAlg )
2 salincld.2 ( 𝜑𝐸𝑆 )
3 salincld.3 ( 𝜑𝐹𝑆 )
4 salincl ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → ( 𝐸𝐹 ) ∈ 𝑆 )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐸𝐹 ) ∈ 𝑆 )