Metamath Proof Explorer


Theorem salunid

Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis salunid.1 ( 𝜑𝑆 ∈ SAlg )
Assertion salunid ( 𝜑 𝑆𝑆 )

Proof

Step Hyp Ref Expression
1 salunid.1 ( 𝜑𝑆 ∈ SAlg )
2 saluni ( 𝑆 ∈ SAlg → 𝑆𝑆 )
3 1 2 syl ( 𝜑 𝑆𝑆 )