Metamath Proof Explorer


Theorem unisalgen2

Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses unisalgen2.x ( 𝜑𝐴𝑉 )
unisalgen2.s 𝑆 = ( SalGen ‘ 𝐴 )
Assertion unisalgen2 ( 𝜑 𝑆 = 𝐴 )

Proof

Step Hyp Ref Expression
1 unisalgen2.x ( 𝜑𝐴𝑉 )
2 unisalgen2.s 𝑆 = ( SalGen ‘ 𝐴 )
3 2 eqcomi ( SalGen ‘ 𝐴 ) = 𝑆
4 3 a1i ( 𝜑 → ( SalGen ‘ 𝐴 ) = 𝑆 )
5 1 dfsalgen2 ( 𝜑 → ( ( SalGen ‘ 𝐴 ) = 𝑆 ↔ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆 ) ∧ ∀ 𝑥 ∈ SAlg ( ( 𝑥 = 𝐴𝐴𝑥 ) → 𝑆𝑥 ) ) ) )
6 4 5 mpbid ( 𝜑 → ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆 ) ∧ ∀ 𝑥 ∈ SAlg ( ( 𝑥 = 𝐴𝐴𝑥 ) → 𝑆𝑥 ) ) )
7 6 simpld ( 𝜑 → ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆 ) )
8 7 simp2d ( 𝜑 𝑆 = 𝐴 )