Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unisalgen2.x | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| unisalgen2.s | ⊢ 𝑆 = ( SalGen ‘ 𝐴 ) | ||
| Assertion | unisalgen2 | ⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisalgen2.x | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | unisalgen2.s | ⊢ 𝑆 = ( SalGen ‘ 𝐴 ) | |
| 3 | 2 | eqcomi | ⊢ ( SalGen ‘ 𝐴 ) = 𝑆 |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ( SalGen ‘ 𝐴 ) = 𝑆 ) |
| 5 | 1 | dfsalgen2 | ⊢ ( 𝜑 → ( ( SalGen ‘ 𝐴 ) = 𝑆 ↔ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆 ) ∧ ∀ 𝑥 ∈ SAlg ( ( ∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥 ) → 𝑆 ⊆ 𝑥 ) ) ) ) |
| 6 | 4 5 | mpbid | ⊢ ( 𝜑 → ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆 ) ∧ ∀ 𝑥 ∈ SAlg ( ( ∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥 ) → 𝑆 ⊆ 𝑥 ) ) ) |
| 7 | 6 | simpld | ⊢ ( 𝜑 → ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆 ) ) |
| 8 | 7 | simp2d | ⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝐴 ) |