Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unisalgen2.x | |- ( ph -> A e. V ) |
|
unisalgen2.s | |- S = ( SalGen ` A ) |
||
Assertion | unisalgen2 | |- ( ph -> U. S = U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisalgen2.x | |- ( ph -> A e. V ) |
|
2 | unisalgen2.s | |- S = ( SalGen ` A ) |
|
3 | 2 | eqcomi | |- ( SalGen ` A ) = S |
4 | 3 | a1i | |- ( ph -> ( SalGen ` A ) = S ) |
5 | 1 | dfsalgen2 | |- ( ph -> ( ( SalGen ` A ) = S <-> ( ( S e. SAlg /\ U. S = U. A /\ A C_ S ) /\ A. x e. SAlg ( ( U. x = U. A /\ A C_ x ) -> S C_ x ) ) ) ) |
6 | 4 5 | mpbid | |- ( ph -> ( ( S e. SAlg /\ U. S = U. A /\ A C_ S ) /\ A. x e. SAlg ( ( U. x = U. A /\ A C_ x ) -> S C_ x ) ) ) |
7 | 6 | simpld | |- ( ph -> ( S e. SAlg /\ U. S = U. A /\ A C_ S ) ) |
8 | 7 | simp2d | |- ( ph -> U. S = U. A ) |