Metamath Proof Explorer


Theorem unisalgen2

Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses unisalgen2.x
|- ( ph -> A e. V )
unisalgen2.s
|- S = ( SalGen ` A )
Assertion unisalgen2
|- ( ph -> U. S = U. A )

Proof

Step Hyp Ref Expression
1 unisalgen2.x
 |-  ( ph -> A e. V )
2 unisalgen2.s
 |-  S = ( SalGen ` A )
3 2 eqcomi
 |-  ( SalGen ` A ) = S
4 3 a1i
 |-  ( ph -> ( SalGen ` A ) = S )
5 1 dfsalgen2
 |-  ( ph -> ( ( SalGen ` A ) = S <-> ( ( S e. SAlg /\ U. S = U. A /\ A C_ S ) /\ A. x e. SAlg ( ( U. x = U. A /\ A C_ x ) -> S C_ x ) ) ) )
6 4 5 mpbid
 |-  ( ph -> ( ( S e. SAlg /\ U. S = U. A /\ A C_ S ) /\ A. x e. SAlg ( ( U. x = U. A /\ A C_ x ) -> S C_ x ) ) )
7 6 simpld
 |-  ( ph -> ( S e. SAlg /\ U. S = U. A /\ A C_ S ) )
8 7 simp2d
 |-  ( ph -> U. S = U. A )