Metamath Proof Explorer


Theorem bor1sal

Description: The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses bor1sal.t
|- J = ( topGen ` ran (,) )
bor1sal.b
|- B = ( SalGen ` J )
Assertion bor1sal
|- B e. SAlg

Proof

Step Hyp Ref Expression
1 bor1sal.t
 |-  J = ( topGen ` ran (,) )
2 bor1sal.b
 |-  B = ( SalGen ` J )
3 retop
 |-  ( topGen ` ran (,) ) e. Top
4 1 3 eqeltri
 |-  J e. Top
5 4 a1i
 |-  ( T. -> J e. Top )
6 5 2 salgencld
 |-  ( T. -> B e. SAlg )
7 6 mptru
 |-  B e. SAlg