Metamath Proof Explorer


Theorem bor1sal

Description: The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses bor1sal.t 𝐽 = ( topGen ‘ ran (,) )
bor1sal.b 𝐵 = ( SalGen ‘ 𝐽 )
Assertion bor1sal 𝐵 ∈ SAlg

Proof

Step Hyp Ref Expression
1 bor1sal.t 𝐽 = ( topGen ‘ ran (,) )
2 bor1sal.b 𝐵 = ( SalGen ‘ 𝐽 )
3 retop ( topGen ‘ ran (,) ) ∈ Top
4 1 3 eqeltri 𝐽 ∈ Top
5 4 a1i ( ⊤ → 𝐽 ∈ Top )
6 5 2 salgencld ( ⊤ → 𝐵 ∈ SAlg )
7 6 mptru 𝐵 ∈ SAlg