| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iocborel.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
iocborel.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 3 |
|
iocborel.t |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 4 |
|
iocborel.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
| 5 |
1 2
|
iooiinioc |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) = ( 𝐴 (,] 𝐶 ) ) |
| 6 |
5
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐶 ) = ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ) |
| 7 |
3 4
|
bor1sal |
⊢ 𝐵 ∈ SAlg |
| 8 |
7
|
a1i |
⊢ ( ⊤ → 𝐵 ∈ SAlg ) |
| 9 |
|
nnct |
⊢ ℕ ≼ ω |
| 10 |
9
|
a1i |
⊢ ( ⊤ → ℕ ≼ ω ) |
| 11 |
|
nnn0 |
⊢ ℕ ≠ ∅ |
| 12 |
11
|
a1i |
⊢ ( ⊤ → ℕ ≠ ∅ ) |
| 13 |
3 4
|
iooborel |
⊢ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 |
| 14 |
13
|
a1i |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 ) |
| 15 |
8 10 12 14
|
saliincl |
⊢ ( ⊤ → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 ) |
| 16 |
15
|
mptru |
⊢ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 ) |
| 18 |
6 17
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐶 ) ∈ 𝐵 ) |