Step |
Hyp |
Ref |
Expression |
1 |
|
iocborel.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
iocborel.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
iocborel.t |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
4 |
|
iocborel.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
5 |
1 2
|
iooiinioc |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) = ( 𝐴 (,] 𝐶 ) ) |
6 |
5
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐶 ) = ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ) |
7 |
3 4
|
bor1sal |
⊢ 𝐵 ∈ SAlg |
8 |
7
|
a1i |
⊢ ( ⊤ → 𝐵 ∈ SAlg ) |
9 |
|
nnct |
⊢ ℕ ≼ ω |
10 |
9
|
a1i |
⊢ ( ⊤ → ℕ ≼ ω ) |
11 |
|
nnn0 |
⊢ ℕ ≠ ∅ |
12 |
11
|
a1i |
⊢ ( ⊤ → ℕ ≠ ∅ ) |
13 |
3 4
|
iooborel |
⊢ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 |
14 |
13
|
a1i |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 ) |
15 |
8 10 12 14
|
saliincl |
⊢ ( ⊤ → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 ) |
16 |
15
|
mptru |
⊢ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 |
17 |
16
|
a1i |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 ) |
18 |
6 17
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐶 ) ∈ 𝐵 ) |