Metamath Proof Explorer


Theorem iocborel

Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iocborel.a ( 𝜑𝐴 ∈ ℝ* )
iocborel.c ( 𝜑𝐶 ∈ ℝ )
iocborel.t 𝐽 = ( topGen ‘ ran (,) )
iocborel.b 𝐵 = ( SalGen ‘ 𝐽 )
Assertion iocborel ( 𝜑 → ( 𝐴 (,] 𝐶 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 iocborel.a ( 𝜑𝐴 ∈ ℝ* )
2 iocborel.c ( 𝜑𝐶 ∈ ℝ )
3 iocborel.t 𝐽 = ( topGen ‘ ran (,) )
4 iocborel.b 𝐵 = ( SalGen ‘ 𝐽 )
5 1 2 iooiinioc ( 𝜑 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) = ( 𝐴 (,] 𝐶 ) )
6 5 eqcomd ( 𝜑 → ( 𝐴 (,] 𝐶 ) = 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) )
7 3 4 bor1sal 𝐵 ∈ SAlg
8 7 a1i ( ⊤ → 𝐵 ∈ SAlg )
9 nnct ℕ ≼ ω
10 9 a1i ( ⊤ → ℕ ≼ ω )
11 nnn0 ℕ ≠ ∅
12 11 a1i ( ⊤ → ℕ ≠ ∅ )
13 3 4 iooborel ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵
14 13 a1i ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 )
15 8 10 12 14 saliincl ( ⊤ → 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 )
16 15 mptru 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵
17 16 a1i ( 𝜑 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐶 + ( 1 / 𝑛 ) ) ) ∈ 𝐵 )
18 6 17 eqeltrd ( 𝜑 → ( 𝐴 (,] 𝐶 ) ∈ 𝐵 )