| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsaliuncllem.f | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | subsaliuncllem.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | subsaliuncllem.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 4 |  | subsaliuncllem.e | ⊢ 𝐸  =  ( 𝐻  ∘  𝐺 ) | 
						
							| 5 |  | subsaliuncllem.h | ⊢ ( 𝜑  →  𝐻  Fn  ran  𝐺 ) | 
						
							| 6 |  | subsaliuncllem.y | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ran  𝐺 ( 𝐻 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 7 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 8 | 3 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  𝐺  ↔  ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 𝑦  ∈  ran  𝐺  ↔  ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 10 | 9 | biimpi | ⊢ ( 𝑦  ∈  ran  𝐺  →  ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 11 |  | id | ⊢ ( 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 12 |  | ssrab2 | ⊢ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ⊆  𝑆 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ⊆  𝑆 ) | 
						
							| 14 | 11 13 | eqsstrd | ⊢ ( 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  𝑦  ⊆  𝑆 ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  𝑦  ⊆  𝑆 ) ) | 
						
							| 16 | 15 | rexlimiv | ⊢ ( ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  𝑦  ⊆  𝑆 ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑦  ∈  ran  𝐺  →  ( ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  𝑦  ⊆  𝑆 ) ) | 
						
							| 18 | 10 17 | mpd | ⊢ ( 𝑦  ∈  ran  𝐺  →  𝑦  ⊆  𝑆 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐺 )  →  𝑦  ⊆  𝑆 ) | 
						
							| 20 | 6 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐺 )  →  ( 𝐻 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 21 | 19 20 | sseldd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐺 )  →  ( 𝐻 ‘ 𝑦 )  ∈  𝑆 ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  ran  𝐺  →  ( 𝐻 ‘ 𝑦 )  ∈  𝑆 ) ) | 
						
							| 23 | 1 22 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ran  𝐺 ( 𝐻 ‘ 𝑦 )  ∈  𝑆 ) | 
						
							| 24 | 5 23 | jca | ⊢ ( 𝜑  →  ( 𝐻  Fn  ran  𝐺  ∧  ∀ 𝑦  ∈  ran  𝐺 ( 𝐻 ‘ 𝑦 )  ∈  𝑆 ) ) | 
						
							| 25 |  | ffnfv | ⊢ ( 𝐻 : ran  𝐺 ⟶ 𝑆  ↔  ( 𝐻  Fn  ran  𝐺  ∧  ∀ 𝑦  ∈  ran  𝐺 ( 𝐻 ‘ 𝑦 )  ∈  𝑆 ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( 𝜑  →  𝐻 : ran  𝐺 ⟶ 𝑆 ) | 
						
							| 27 |  | eqid | ⊢ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } | 
						
							| 28 | 27 2 | rabexd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ∈  V ) | 
						
							| 29 | 28 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ∈  V ) | 
						
							| 30 | 3 | fnmpt | ⊢ ( ∀ 𝑛  ∈  ℕ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ∈  V  →  𝐺  Fn  ℕ ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝜑  →  𝐺  Fn  ℕ ) | 
						
							| 32 |  | dffn3 | ⊢ ( 𝐺  Fn  ℕ  ↔  𝐺 : ℕ ⟶ ran  𝐺 ) | 
						
							| 33 | 31 32 | sylib | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ ran  𝐺 ) | 
						
							| 34 |  | fco | ⊢ ( ( 𝐻 : ran  𝐺 ⟶ 𝑆  ∧  𝐺 : ℕ ⟶ ran  𝐺 )  →  ( 𝐻  ∘  𝐺 ) : ℕ ⟶ 𝑆 ) | 
						
							| 35 | 26 33 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐺 ) : ℕ ⟶ 𝑆 ) | 
						
							| 36 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 38 | 2 37 | elmapd | ⊢ ( 𝜑  →  ( ( 𝐻  ∘  𝐺 )  ∈  ( 𝑆  ↑m  ℕ )  ↔  ( 𝐻  ∘  𝐺 ) : ℕ ⟶ 𝑆 ) ) | 
						
							| 39 | 35 38 | mpbird | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐺 )  ∈  ( 𝑆  ↑m  ℕ ) ) | 
						
							| 40 | 4 39 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑆  ↑m  ℕ ) ) | 
						
							| 41 | 33 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  ∈  ran  𝐺 ) | 
						
							| 42 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑦  ∈  ran  𝐺 ( 𝐻 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑛 )  →  ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 44 |  | id | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑛 )  →  𝑦  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 45 | 43 44 | eleq12d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑛 )  →  ( ( 𝐻 ‘ 𝑦 )  ∈  𝑦  ↔  ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 46 | 45 | rspcva | ⊢ ( ( ( 𝐺 ‘ 𝑛 )  ∈  ran  𝐺  ∧  ∀ 𝑦  ∈  ran  𝐺 ( 𝐻 ‘ 𝑦 )  ∈  𝑦 )  →  ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 47 | 41 42 46 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 48 | 33 | ffund | ⊢ ( 𝜑  →  Fun  𝐺 ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  Fun  𝐺 ) | 
						
							| 50 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 51 | 3 | dmeqi | ⊢ dom  𝐺  =  dom  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 52 | 51 | a1i | ⊢ ( 𝜑  →  dom  𝐺  =  dom  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 53 |  | dmmptg | ⊢ ( ∀ 𝑛  ∈  ℕ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ∈  V  →  dom  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  =  ℕ ) | 
						
							| 54 | 29 53 | syl | ⊢ ( 𝜑  →  dom  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  =  ℕ ) | 
						
							| 55 | 52 54 | eqtrd | ⊢ ( 𝜑  →  dom  𝐺  =  ℕ ) | 
						
							| 56 | 55 | eqcomd | ⊢ ( 𝜑  →  ℕ  =  dom  𝐺 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ℕ  =  dom  𝐺 ) | 
						
							| 58 | 50 57 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  dom  𝐺 ) | 
						
							| 59 | 49 58 4 | fvcod | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 60 | 3 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 61 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ∈  V ) | 
						
							| 62 | 60 61 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 63 | 62 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 64 | 59 63 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐸 ‘ 𝑛 )  ∈  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ↔  ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 65 | 47 64 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐸 ‘ 𝑛 )  ∈  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 66 |  | ineq1 | ⊢ ( 𝑥  =  ( 𝐸 ‘ 𝑛 )  →  ( 𝑥  ∩  𝐷 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 67 | 66 | eqeq2d | ⊢ ( 𝑥  =  ( 𝐸 ‘ 𝑛 )  →  ( ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 )  ↔  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) ) | 
						
							| 68 | 67 | elrab | ⊢ ( ( 𝐸 ‘ 𝑛 )  ∈  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ↔  ( ( 𝐸 ‘ 𝑛 )  ∈  𝑆  ∧  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) ) | 
						
							| 69 | 65 68 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐸 ‘ 𝑛 )  ∈  𝑆  ∧  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) ) | 
						
							| 70 | 69 | simprd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 71 | 70 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 72 |  | fveq1 | ⊢ ( 𝑒  =  𝐸  →  ( 𝑒 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 73 | 72 | ineq1d | ⊢ ( 𝑒  =  𝐸  →  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 74 | 73 | eqeq2d | ⊢ ( 𝑒  =  𝐸  →  ( ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  ↔  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) ) | 
						
							| 75 | 74 | ralbidv | ⊢ ( 𝑒  =  𝐸  →  ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  ↔  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) ) ) | 
						
							| 76 | 75 | rspcev | ⊢ ( ( 𝐸  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∩  𝐷 ) )  →  ∃ 𝑒  ∈  ( 𝑆  ↑m  ℕ ) ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 77 | 40 71 76 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  ( 𝑆  ↑m  ℕ ) ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) |