Metamath Proof Explorer


Theorem subsaliuncllem

Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsaliuncllem.f 𝑦 𝜑
subsaliuncllem.s ( 𝜑𝑆𝑉 )
subsaliuncllem.g 𝐺 = ( 𝑛 ∈ ℕ ↦ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } )
subsaliuncllem.e 𝐸 = ( 𝐻𝐺 )
subsaliuncllem.h ( 𝜑𝐻 Fn ran 𝐺 )
subsaliuncllem.y ( 𝜑 → ∀ 𝑦 ∈ ran 𝐺 ( 𝐻𝑦 ) ∈ 𝑦 )
Assertion subsaliuncllem ( 𝜑 → ∃ 𝑒 ∈ ( 𝑆m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ( ( 𝑒𝑛 ) ∩ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 subsaliuncllem.f 𝑦 𝜑
2 subsaliuncllem.s ( 𝜑𝑆𝑉 )
3 subsaliuncllem.g 𝐺 = ( 𝑛 ∈ ℕ ↦ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } )
4 subsaliuncllem.e 𝐸 = ( 𝐻𝐺 )
5 subsaliuncllem.h ( 𝜑𝐻 Fn ran 𝐺 )
6 subsaliuncllem.y ( 𝜑 → ∀ 𝑦 ∈ ran 𝐺 ( 𝐻𝑦 ) ∈ 𝑦 )
7 vex 𝑦 ∈ V
8 3 elrnmpt ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ) )
9 7 8 ax-mp ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } )
10 9 biimpi ( 𝑦 ∈ ran 𝐺 → ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } )
11 id ( 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } → 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } )
12 ssrab2 { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ⊆ 𝑆
13 12 a1i ( 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } → { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ⊆ 𝑆 )
14 11 13 eqsstrd ( 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } → 𝑦𝑆 )
15 14 a1i ( 𝑛 ∈ ℕ → ( 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } → 𝑦𝑆 ) )
16 15 rexlimiv ( ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } → 𝑦𝑆 )
17 16 a1i ( 𝑦 ∈ ran 𝐺 → ( ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } → 𝑦𝑆 ) )
18 10 17 mpd ( 𝑦 ∈ ran 𝐺𝑦𝑆 )
19 18 adantl ( ( 𝜑𝑦 ∈ ran 𝐺 ) → 𝑦𝑆 )
20 6 r19.21bi ( ( 𝜑𝑦 ∈ ran 𝐺 ) → ( 𝐻𝑦 ) ∈ 𝑦 )
21 19 20 sseldd ( ( 𝜑𝑦 ∈ ran 𝐺 ) → ( 𝐻𝑦 ) ∈ 𝑆 )
22 21 ex ( 𝜑 → ( 𝑦 ∈ ran 𝐺 → ( 𝐻𝑦 ) ∈ 𝑆 ) )
23 1 22 ralrimi ( 𝜑 → ∀ 𝑦 ∈ ran 𝐺 ( 𝐻𝑦 ) ∈ 𝑆 )
24 5 23 jca ( 𝜑 → ( 𝐻 Fn ran 𝐺 ∧ ∀ 𝑦 ∈ ran 𝐺 ( 𝐻𝑦 ) ∈ 𝑆 ) )
25 ffnfv ( 𝐻 : ran 𝐺𝑆 ↔ ( 𝐻 Fn ran 𝐺 ∧ ∀ 𝑦 ∈ ran 𝐺 ( 𝐻𝑦 ) ∈ 𝑆 ) )
26 24 25 sylibr ( 𝜑𝐻 : ran 𝐺𝑆 )
27 eqid { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) }
28 27 2 rabexd ( 𝜑 → { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ∈ V )
29 28 ralrimivw ( 𝜑 → ∀ 𝑛 ∈ ℕ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ∈ V )
30 3 fnmpt ( ∀ 𝑛 ∈ ℕ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ∈ V → 𝐺 Fn ℕ )
31 29 30 syl ( 𝜑𝐺 Fn ℕ )
32 dffn3 ( 𝐺 Fn ℕ ↔ 𝐺 : ℕ ⟶ ran 𝐺 )
33 31 32 sylib ( 𝜑𝐺 : ℕ ⟶ ran 𝐺 )
34 fco ( ( 𝐻 : ran 𝐺𝑆𝐺 : ℕ ⟶ ran 𝐺 ) → ( 𝐻𝐺 ) : ℕ ⟶ 𝑆 )
35 26 33 34 syl2anc ( 𝜑 → ( 𝐻𝐺 ) : ℕ ⟶ 𝑆 )
36 nnex ℕ ∈ V
37 36 a1i ( 𝜑 → ℕ ∈ V )
38 2 37 elmapd ( 𝜑 → ( ( 𝐻𝐺 ) ∈ ( 𝑆m ℕ ) ↔ ( 𝐻𝐺 ) : ℕ ⟶ 𝑆 ) )
39 35 38 mpbird ( 𝜑 → ( 𝐻𝐺 ) ∈ ( 𝑆m ℕ ) )
40 4 39 eqeltrid ( 𝜑𝐸 ∈ ( 𝑆m ℕ ) )
41 33 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) ∈ ran 𝐺 )
42 6 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ∀ 𝑦 ∈ ran 𝐺 ( 𝐻𝑦 ) ∈ 𝑦 )
43 fveq2 ( 𝑦 = ( 𝐺𝑛 ) → ( 𝐻𝑦 ) = ( 𝐻 ‘ ( 𝐺𝑛 ) ) )
44 id ( 𝑦 = ( 𝐺𝑛 ) → 𝑦 = ( 𝐺𝑛 ) )
45 43 44 eleq12d ( 𝑦 = ( 𝐺𝑛 ) → ( ( 𝐻𝑦 ) ∈ 𝑦 ↔ ( 𝐻 ‘ ( 𝐺𝑛 ) ) ∈ ( 𝐺𝑛 ) ) )
46 45 rspcva ( ( ( 𝐺𝑛 ) ∈ ran 𝐺 ∧ ∀ 𝑦 ∈ ran 𝐺 ( 𝐻𝑦 ) ∈ 𝑦 ) → ( 𝐻 ‘ ( 𝐺𝑛 ) ) ∈ ( 𝐺𝑛 ) )
47 41 42 46 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐻 ‘ ( 𝐺𝑛 ) ) ∈ ( 𝐺𝑛 ) )
48 33 ffund ( 𝜑 → Fun 𝐺 )
49 48 adantr ( ( 𝜑𝑛 ∈ ℕ ) → Fun 𝐺 )
50 simpr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
51 3 dmeqi dom 𝐺 = dom ( 𝑛 ∈ ℕ ↦ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } )
52 51 a1i ( 𝜑 → dom 𝐺 = dom ( 𝑛 ∈ ℕ ↦ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ) )
53 dmmptg ( ∀ 𝑛 ∈ ℕ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ∈ V → dom ( 𝑛 ∈ ℕ ↦ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ) = ℕ )
54 29 53 syl ( 𝜑 → dom ( 𝑛 ∈ ℕ ↦ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ) = ℕ )
55 52 54 eqtrd ( 𝜑 → dom 𝐺 = ℕ )
56 55 eqcomd ( 𝜑 → ℕ = dom 𝐺 )
57 56 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ℕ = dom 𝐺 )
58 50 57 eleqtrd ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ dom 𝐺 )
59 49 58 4 fvcod ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸𝑛 ) = ( 𝐻 ‘ ( 𝐺𝑛 ) ) )
60 3 a1i ( 𝜑𝐺 = ( 𝑛 ∈ ℕ ↦ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ) )
61 28 adantr ( ( 𝜑𝑛 ∈ ℕ ) → { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ∈ V )
62 60 61 fvmpt2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) = { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } )
63 62 eqcomd ( ( 𝜑𝑛 ∈ ℕ ) → { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } = ( 𝐺𝑛 ) )
64 59 63 eleq12d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐸𝑛 ) ∈ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ↔ ( 𝐻 ‘ ( 𝐺𝑛 ) ) ∈ ( 𝐺𝑛 ) ) )
65 47 64 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸𝑛 ) ∈ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } )
66 ineq1 ( 𝑥 = ( 𝐸𝑛 ) → ( 𝑥𝐷 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) )
67 66 eqeq2d ( 𝑥 = ( 𝐸𝑛 ) → ( ( 𝐹𝑛 ) = ( 𝑥𝐷 ) ↔ ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) ) )
68 67 elrab ( ( 𝐸𝑛 ) ∈ { 𝑥𝑆 ∣ ( 𝐹𝑛 ) = ( 𝑥𝐷 ) } ↔ ( ( 𝐸𝑛 ) ∈ 𝑆 ∧ ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) ) )
69 65 68 sylib ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐸𝑛 ) ∈ 𝑆 ∧ ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) ) )
70 69 simprd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) )
71 70 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) )
72 fveq1 ( 𝑒 = 𝐸 → ( 𝑒𝑛 ) = ( 𝐸𝑛 ) )
73 72 ineq1d ( 𝑒 = 𝐸 → ( ( 𝑒𝑛 ) ∩ 𝐷 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) )
74 73 eqeq2d ( 𝑒 = 𝐸 → ( ( 𝐹𝑛 ) = ( ( 𝑒𝑛 ) ∩ 𝐷 ) ↔ ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) ) )
75 74 ralbidv ( 𝑒 = 𝐸 → ( ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ( ( 𝑒𝑛 ) ∩ 𝐷 ) ↔ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) ) )
76 75 rspcev ( ( 𝐸 ∈ ( 𝑆m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ( ( 𝐸𝑛 ) ∩ 𝐷 ) ) → ∃ 𝑒 ∈ ( 𝑆m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ( ( 𝑒𝑛 ) ∩ 𝐷 ) )
77 40 71 76 syl2anc ( 𝜑 → ∃ 𝑒 ∈ ( 𝑆m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ( ( 𝑒𝑛 ) ∩ 𝐷 ) )