Step |
Hyp |
Ref |
Expression |
1 |
|
subsaliuncllem.f |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
subsaliuncllem.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
3 |
|
subsaliuncllem.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
4 |
|
subsaliuncllem.e |
⊢ 𝐸 = ( 𝐻 ∘ 𝐺 ) |
5 |
|
subsaliuncllem.h |
⊢ ( 𝜑 → 𝐻 Fn ran 𝐺 ) |
6 |
|
subsaliuncllem.y |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ran 𝐺 ( 𝐻 ‘ 𝑦 ) ∈ 𝑦 ) |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
3
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
10 |
9
|
biimpi |
⊢ ( 𝑦 ∈ ran 𝐺 → ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
11 |
|
id |
⊢ ( 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
12 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ⊆ 𝑆 |
13 |
12
|
a1i |
⊢ ( 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ⊆ 𝑆 ) |
14 |
11 13
|
eqsstrd |
⊢ ( 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → 𝑦 ⊆ 𝑆 ) |
15 |
14
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → 𝑦 ⊆ 𝑆 ) ) |
16 |
15
|
rexlimiv |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → 𝑦 ⊆ 𝑆 ) |
17 |
16
|
a1i |
⊢ ( 𝑦 ∈ ran 𝐺 → ( ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → 𝑦 ⊆ 𝑆 ) ) |
18 |
10 17
|
mpd |
⊢ ( 𝑦 ∈ ran 𝐺 → 𝑦 ⊆ 𝑆 ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐺 ) → 𝑦 ⊆ 𝑆 ) |
20 |
6
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝑦 ) |
21 |
19 20
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝑆 ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐺 → ( 𝐻 ‘ 𝑦 ) ∈ 𝑆 ) ) |
23 |
1 22
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ran 𝐺 ( 𝐻 ‘ 𝑦 ) ∈ 𝑆 ) |
24 |
5 23
|
jca |
⊢ ( 𝜑 → ( 𝐻 Fn ran 𝐺 ∧ ∀ 𝑦 ∈ ran 𝐺 ( 𝐻 ‘ 𝑦 ) ∈ 𝑆 ) ) |
25 |
|
ffnfv |
⊢ ( 𝐻 : ran 𝐺 ⟶ 𝑆 ↔ ( 𝐻 Fn ran 𝐺 ∧ ∀ 𝑦 ∈ ran 𝐺 ( 𝐻 ‘ 𝑦 ) ∈ 𝑆 ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝜑 → 𝐻 : ran 𝐺 ⟶ 𝑆 ) |
27 |
|
eqid |
⊢ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } |
28 |
27 2
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ∈ V ) |
29 |
28
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ∈ V ) |
30 |
3
|
fnmpt |
⊢ ( ∀ 𝑛 ∈ ℕ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ∈ V → 𝐺 Fn ℕ ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝐺 Fn ℕ ) |
32 |
|
dffn3 |
⊢ ( 𝐺 Fn ℕ ↔ 𝐺 : ℕ ⟶ ran 𝐺 ) |
33 |
31 32
|
sylib |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ran 𝐺 ) |
34 |
|
fco |
⊢ ( ( 𝐻 : ran 𝐺 ⟶ 𝑆 ∧ 𝐺 : ℕ ⟶ ran 𝐺 ) → ( 𝐻 ∘ 𝐺 ) : ℕ ⟶ 𝑆 ) |
35 |
26 33 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) : ℕ ⟶ 𝑆 ) |
36 |
|
nnex |
⊢ ℕ ∈ V |
37 |
36
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
38 |
2 37
|
elmapd |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐺 ) ∈ ( 𝑆 ↑m ℕ ) ↔ ( 𝐻 ∘ 𝐺 ) : ℕ ⟶ 𝑆 ) ) |
39 |
35 38
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) ∈ ( 𝑆 ↑m ℕ ) ) |
40 |
4 39
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑆 ↑m ℕ ) ) |
41 |
33
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ran 𝐺 ) |
42 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑦 ∈ ran 𝐺 ( 𝐻 ‘ 𝑦 ) ∈ 𝑦 ) |
43 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑛 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
44 |
|
id |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑛 ) → 𝑦 = ( 𝐺 ‘ 𝑛 ) ) |
45 |
43 44
|
eleq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑛 ) → ( ( 𝐻 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) ) ∈ ( 𝐺 ‘ 𝑛 ) ) ) |
46 |
45
|
rspcva |
⊢ ( ( ( 𝐺 ‘ 𝑛 ) ∈ ran 𝐺 ∧ ∀ 𝑦 ∈ ran 𝐺 ( 𝐻 ‘ 𝑦 ) ∈ 𝑦 ) → ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) ) ∈ ( 𝐺 ‘ 𝑛 ) ) |
47 |
41 42 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) ) ∈ ( 𝐺 ‘ 𝑛 ) ) |
48 |
33
|
ffund |
⊢ ( 𝜑 → Fun 𝐺 ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Fun 𝐺 ) |
50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
51 |
3
|
dmeqi |
⊢ dom 𝐺 = dom ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
52 |
51
|
a1i |
⊢ ( 𝜑 → dom 𝐺 = dom ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
53 |
|
dmmptg |
⊢ ( ∀ 𝑛 ∈ ℕ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ∈ V → dom ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) = ℕ ) |
54 |
29 53
|
syl |
⊢ ( 𝜑 → dom ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) = ℕ ) |
55 |
52 54
|
eqtrd |
⊢ ( 𝜑 → dom 𝐺 = ℕ ) |
56 |
55
|
eqcomd |
⊢ ( 𝜑 → ℕ = dom 𝐺 ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ℕ = dom 𝐺 ) |
58 |
50 57
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ dom 𝐺 ) |
59 |
49 58 4
|
fvcod |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) = ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
60 |
3
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
61 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ∈ V ) |
62 |
60 61
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
63 |
62
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } = ( 𝐺 ‘ 𝑛 ) ) |
64 |
59 63
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ↔ ( 𝐻 ‘ ( 𝐺 ‘ 𝑛 ) ) ∈ ( 𝐺 ‘ 𝑛 ) ) ) |
65 |
47 64
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
66 |
|
ineq1 |
⊢ ( 𝑥 = ( 𝐸 ‘ 𝑛 ) → ( 𝑥 ∩ 𝐷 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) |
67 |
66
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐸 ‘ 𝑛 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) ↔ ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) ) |
68 |
67
|
elrab |
⊢ ( ( 𝐸 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ↔ ( ( 𝐸 ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) ) |
69 |
65 68
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) ) |
70 |
69
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) |
71 |
70
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) |
72 |
|
fveq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑛 ) ) |
73 |
72
|
ineq1d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) |
74 |
73
|
eqeq2d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ↔ ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) ) |
75 |
74
|
ralbidv |
⊢ ( 𝑒 = 𝐸 → ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ↔ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) ) |
76 |
75
|
rspcev |
⊢ ( ( 𝐸 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∩ 𝐷 ) ) → ∃ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
77 |
40 71 76
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |