| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsaliuncllem.f |
|- F/ y ph |
| 2 |
|
subsaliuncllem.s |
|- ( ph -> S e. V ) |
| 3 |
|
subsaliuncllem.g |
|- G = ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) |
| 4 |
|
subsaliuncllem.e |
|- E = ( H o. G ) |
| 5 |
|
subsaliuncllem.h |
|- ( ph -> H Fn ran G ) |
| 6 |
|
subsaliuncllem.y |
|- ( ph -> A. y e. ran G ( H ` y ) e. y ) |
| 7 |
|
vex |
|- y e. _V |
| 8 |
3
|
elrnmpt |
|- ( y e. _V -> ( y e. ran G <-> E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } ) ) |
| 9 |
7 8
|
ax-mp |
|- ( y e. ran G <-> E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } ) |
| 10 |
9
|
biimpi |
|- ( y e. ran G -> E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } ) |
| 11 |
|
id |
|- ( y = { x e. S | ( F ` n ) = ( x i^i D ) } -> y = { x e. S | ( F ` n ) = ( x i^i D ) } ) |
| 12 |
|
ssrab2 |
|- { x e. S | ( F ` n ) = ( x i^i D ) } C_ S |
| 13 |
12
|
a1i |
|- ( y = { x e. S | ( F ` n ) = ( x i^i D ) } -> { x e. S | ( F ` n ) = ( x i^i D ) } C_ S ) |
| 14 |
11 13
|
eqsstrd |
|- ( y = { x e. S | ( F ` n ) = ( x i^i D ) } -> y C_ S ) |
| 15 |
14
|
a1i |
|- ( n e. NN -> ( y = { x e. S | ( F ` n ) = ( x i^i D ) } -> y C_ S ) ) |
| 16 |
15
|
rexlimiv |
|- ( E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } -> y C_ S ) |
| 17 |
16
|
a1i |
|- ( y e. ran G -> ( E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } -> y C_ S ) ) |
| 18 |
10 17
|
mpd |
|- ( y e. ran G -> y C_ S ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ y e. ran G ) -> y C_ S ) |
| 20 |
6
|
r19.21bi |
|- ( ( ph /\ y e. ran G ) -> ( H ` y ) e. y ) |
| 21 |
19 20
|
sseldd |
|- ( ( ph /\ y e. ran G ) -> ( H ` y ) e. S ) |
| 22 |
21
|
ex |
|- ( ph -> ( y e. ran G -> ( H ` y ) e. S ) ) |
| 23 |
1 22
|
ralrimi |
|- ( ph -> A. y e. ran G ( H ` y ) e. S ) |
| 24 |
5 23
|
jca |
|- ( ph -> ( H Fn ran G /\ A. y e. ran G ( H ` y ) e. S ) ) |
| 25 |
|
ffnfv |
|- ( H : ran G --> S <-> ( H Fn ran G /\ A. y e. ran G ( H ` y ) e. S ) ) |
| 26 |
24 25
|
sylibr |
|- ( ph -> H : ran G --> S ) |
| 27 |
|
eqid |
|- { x e. S | ( F ` n ) = ( x i^i D ) } = { x e. S | ( F ` n ) = ( x i^i D ) } |
| 28 |
27 2
|
rabexd |
|- ( ph -> { x e. S | ( F ` n ) = ( x i^i D ) } e. _V ) |
| 29 |
28
|
ralrimivw |
|- ( ph -> A. n e. NN { x e. S | ( F ` n ) = ( x i^i D ) } e. _V ) |
| 30 |
3
|
fnmpt |
|- ( A. n e. NN { x e. S | ( F ` n ) = ( x i^i D ) } e. _V -> G Fn NN ) |
| 31 |
29 30
|
syl |
|- ( ph -> G Fn NN ) |
| 32 |
|
dffn3 |
|- ( G Fn NN <-> G : NN --> ran G ) |
| 33 |
31 32
|
sylib |
|- ( ph -> G : NN --> ran G ) |
| 34 |
|
fco |
|- ( ( H : ran G --> S /\ G : NN --> ran G ) -> ( H o. G ) : NN --> S ) |
| 35 |
26 33 34
|
syl2anc |
|- ( ph -> ( H o. G ) : NN --> S ) |
| 36 |
|
nnex |
|- NN e. _V |
| 37 |
36
|
a1i |
|- ( ph -> NN e. _V ) |
| 38 |
2 37
|
elmapd |
|- ( ph -> ( ( H o. G ) e. ( S ^m NN ) <-> ( H o. G ) : NN --> S ) ) |
| 39 |
35 38
|
mpbird |
|- ( ph -> ( H o. G ) e. ( S ^m NN ) ) |
| 40 |
4 39
|
eqeltrid |
|- ( ph -> E e. ( S ^m NN ) ) |
| 41 |
33
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ran G ) |
| 42 |
6
|
adantr |
|- ( ( ph /\ n e. NN ) -> A. y e. ran G ( H ` y ) e. y ) |
| 43 |
|
fveq2 |
|- ( y = ( G ` n ) -> ( H ` y ) = ( H ` ( G ` n ) ) ) |
| 44 |
|
id |
|- ( y = ( G ` n ) -> y = ( G ` n ) ) |
| 45 |
43 44
|
eleq12d |
|- ( y = ( G ` n ) -> ( ( H ` y ) e. y <-> ( H ` ( G ` n ) ) e. ( G ` n ) ) ) |
| 46 |
45
|
rspcva |
|- ( ( ( G ` n ) e. ran G /\ A. y e. ran G ( H ` y ) e. y ) -> ( H ` ( G ` n ) ) e. ( G ` n ) ) |
| 47 |
41 42 46
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( H ` ( G ` n ) ) e. ( G ` n ) ) |
| 48 |
33
|
ffund |
|- ( ph -> Fun G ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ n e. NN ) -> Fun G ) |
| 50 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 51 |
3
|
dmeqi |
|- dom G = dom ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) |
| 52 |
51
|
a1i |
|- ( ph -> dom G = dom ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ) |
| 53 |
|
dmmptg |
|- ( A. n e. NN { x e. S | ( F ` n ) = ( x i^i D ) } e. _V -> dom ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) = NN ) |
| 54 |
29 53
|
syl |
|- ( ph -> dom ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) = NN ) |
| 55 |
52 54
|
eqtrd |
|- ( ph -> dom G = NN ) |
| 56 |
55
|
eqcomd |
|- ( ph -> NN = dom G ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ n e. NN ) -> NN = dom G ) |
| 58 |
50 57
|
eleqtrd |
|- ( ( ph /\ n e. NN ) -> n e. dom G ) |
| 59 |
49 58 4
|
fvcod |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) = ( H ` ( G ` n ) ) ) |
| 60 |
3
|
a1i |
|- ( ph -> G = ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ) |
| 61 |
28
|
adantr |
|- ( ( ph /\ n e. NN ) -> { x e. S | ( F ` n ) = ( x i^i D ) } e. _V ) |
| 62 |
60 61
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) = { x e. S | ( F ` n ) = ( x i^i D ) } ) |
| 63 |
62
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> { x e. S | ( F ` n ) = ( x i^i D ) } = ( G ` n ) ) |
| 64 |
59 63
|
eleq12d |
|- ( ( ph /\ n e. NN ) -> ( ( E ` n ) e. { x e. S | ( F ` n ) = ( x i^i D ) } <-> ( H ` ( G ` n ) ) e. ( G ` n ) ) ) |
| 65 |
47 64
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) e. { x e. S | ( F ` n ) = ( x i^i D ) } ) |
| 66 |
|
ineq1 |
|- ( x = ( E ` n ) -> ( x i^i D ) = ( ( E ` n ) i^i D ) ) |
| 67 |
66
|
eqeq2d |
|- ( x = ( E ` n ) -> ( ( F ` n ) = ( x i^i D ) <-> ( F ` n ) = ( ( E ` n ) i^i D ) ) ) |
| 68 |
67
|
elrab |
|- ( ( E ` n ) e. { x e. S | ( F ` n ) = ( x i^i D ) } <-> ( ( E ` n ) e. S /\ ( F ` n ) = ( ( E ` n ) i^i D ) ) ) |
| 69 |
65 68
|
sylib |
|- ( ( ph /\ n e. NN ) -> ( ( E ` n ) e. S /\ ( F ` n ) = ( ( E ` n ) i^i D ) ) ) |
| 70 |
69
|
simprd |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( E ` n ) i^i D ) ) |
| 71 |
70
|
ralrimiva |
|- ( ph -> A. n e. NN ( F ` n ) = ( ( E ` n ) i^i D ) ) |
| 72 |
|
fveq1 |
|- ( e = E -> ( e ` n ) = ( E ` n ) ) |
| 73 |
72
|
ineq1d |
|- ( e = E -> ( ( e ` n ) i^i D ) = ( ( E ` n ) i^i D ) ) |
| 74 |
73
|
eqeq2d |
|- ( e = E -> ( ( F ` n ) = ( ( e ` n ) i^i D ) <-> ( F ` n ) = ( ( E ` n ) i^i D ) ) ) |
| 75 |
74
|
ralbidv |
|- ( e = E -> ( A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) <-> A. n e. NN ( F ` n ) = ( ( E ` n ) i^i D ) ) ) |
| 76 |
75
|
rspcev |
|- ( ( E e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( E ` n ) i^i D ) ) -> E. e e. ( S ^m NN ) A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) |
| 77 |
40 71 76
|
syl2anc |
|- ( ph -> E. e e. ( S ^m NN ) A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) |