Step |
Hyp |
Ref |
Expression |
1 |
|
subsaliuncllem.f |
|
2 |
|
subsaliuncllem.s |
|
3 |
|
subsaliuncllem.g |
|
4 |
|
subsaliuncllem.e |
|
5 |
|
subsaliuncllem.h |
|
6 |
|
subsaliuncllem.y |
|
7 |
|
vex |
|
8 |
3
|
elrnmpt |
|
9 |
7 8
|
ax-mp |
|
10 |
9
|
biimpi |
|
11 |
|
id |
|
12 |
|
ssrab2 |
|
13 |
12
|
a1i |
|
14 |
11 13
|
eqsstrd |
|
15 |
14
|
a1i |
|
16 |
15
|
rexlimiv |
|
17 |
16
|
a1i |
|
18 |
10 17
|
mpd |
|
19 |
18
|
adantl |
|
20 |
6
|
r19.21bi |
|
21 |
19 20
|
sseldd |
|
22 |
21
|
ex |
|
23 |
1 22
|
ralrimi |
|
24 |
5 23
|
jca |
|
25 |
|
ffnfv |
|
26 |
24 25
|
sylibr |
|
27 |
|
eqid |
|
28 |
27 2
|
rabexd |
|
29 |
28
|
ralrimivw |
|
30 |
3
|
fnmpt |
|
31 |
29 30
|
syl |
|
32 |
|
dffn3 |
|
33 |
31 32
|
sylib |
|
34 |
|
fco |
|
35 |
26 33 34
|
syl2anc |
|
36 |
|
nnex |
|
37 |
36
|
a1i |
|
38 |
2 37
|
elmapd |
|
39 |
35 38
|
mpbird |
|
40 |
4 39
|
eqeltrid |
|
41 |
33
|
ffvelrnda |
|
42 |
6
|
adantr |
|
43 |
|
fveq2 |
|
44 |
|
id |
|
45 |
43 44
|
eleq12d |
|
46 |
45
|
rspcva |
|
47 |
41 42 46
|
syl2anc |
|
48 |
33
|
ffund |
|
49 |
48
|
adantr |
|
50 |
|
simpr |
|
51 |
3
|
dmeqi |
|
52 |
51
|
a1i |
|
53 |
|
dmmptg |
|
54 |
29 53
|
syl |
|
55 |
52 54
|
eqtrd |
|
56 |
55
|
eqcomd |
|
57 |
56
|
adantr |
|
58 |
50 57
|
eleqtrd |
|
59 |
49 58 4
|
fvcod |
|
60 |
3
|
a1i |
|
61 |
28
|
adantr |
|
62 |
60 61
|
fvmpt2d |
|
63 |
62
|
eqcomd |
|
64 |
59 63
|
eleq12d |
|
65 |
47 64
|
mpbird |
|
66 |
|
ineq1 |
|
67 |
66
|
eqeq2d |
|
68 |
67
|
elrab |
|
69 |
65 68
|
sylib |
|
70 |
69
|
simprd |
|
71 |
70
|
ralrimiva |
|
72 |
|
fveq1 |
|
73 |
72
|
ineq1d |
|
74 |
73
|
eqeq2d |
|
75 |
74
|
ralbidv |
|
76 |
75
|
rspcev |
|
77 |
40 71 76
|
syl2anc |
|