Metamath Proof Explorer


Theorem subsaliuncllem

Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsaliuncllem.f y φ
subsaliuncllem.s φ S V
subsaliuncllem.g G = n x S | F n = x D
subsaliuncllem.e E = H G
subsaliuncllem.h φ H Fn ran G
subsaliuncllem.y φ y ran G H y y
Assertion subsaliuncllem φ e S n F n = e n D

Proof

Step Hyp Ref Expression
1 subsaliuncllem.f y φ
2 subsaliuncllem.s φ S V
3 subsaliuncllem.g G = n x S | F n = x D
4 subsaliuncllem.e E = H G
5 subsaliuncllem.h φ H Fn ran G
6 subsaliuncllem.y φ y ran G H y y
7 vex y V
8 3 elrnmpt y V y ran G n y = x S | F n = x D
9 7 8 ax-mp y ran G n y = x S | F n = x D
10 9 biimpi y ran G n y = x S | F n = x D
11 id y = x S | F n = x D y = x S | F n = x D
12 ssrab2 x S | F n = x D S
13 12 a1i y = x S | F n = x D x S | F n = x D S
14 11 13 eqsstrd y = x S | F n = x D y S
15 14 a1i n y = x S | F n = x D y S
16 15 rexlimiv n y = x S | F n = x D y S
17 16 a1i y ran G n y = x S | F n = x D y S
18 10 17 mpd y ran G y S
19 18 adantl φ y ran G y S
20 6 r19.21bi φ y ran G H y y
21 19 20 sseldd φ y ran G H y S
22 21 ex φ y ran G H y S
23 1 22 ralrimi φ y ran G H y S
24 5 23 jca φ H Fn ran G y ran G H y S
25 ffnfv H : ran G S H Fn ran G y ran G H y S
26 24 25 sylibr φ H : ran G S
27 eqid x S | F n = x D = x S | F n = x D
28 27 2 rabexd φ x S | F n = x D V
29 28 ralrimivw φ n x S | F n = x D V
30 3 fnmpt n x S | F n = x D V G Fn
31 29 30 syl φ G Fn
32 dffn3 G Fn G : ran G
33 31 32 sylib φ G : ran G
34 fco H : ran G S G : ran G H G : S
35 26 33 34 syl2anc φ H G : S
36 nnex V
37 36 a1i φ V
38 2 37 elmapd φ H G S H G : S
39 35 38 mpbird φ H G S
40 4 39 eqeltrid φ E S
41 33 ffvelrnda φ n G n ran G
42 6 adantr φ n y ran G H y y
43 fveq2 y = G n H y = H G n
44 id y = G n y = G n
45 43 44 eleq12d y = G n H y y H G n G n
46 45 rspcva G n ran G y ran G H y y H G n G n
47 41 42 46 syl2anc φ n H G n G n
48 33 ffund φ Fun G
49 48 adantr φ n Fun G
50 simpr φ n n
51 3 dmeqi dom G = dom n x S | F n = x D
52 51 a1i φ dom G = dom n x S | F n = x D
53 dmmptg n x S | F n = x D V dom n x S | F n = x D =
54 29 53 syl φ dom n x S | F n = x D =
55 52 54 eqtrd φ dom G =
56 55 eqcomd φ = dom G
57 56 adantr φ n = dom G
58 50 57 eleqtrd φ n n dom G
59 49 58 4 fvcod φ n E n = H G n
60 3 a1i φ G = n x S | F n = x D
61 28 adantr φ n x S | F n = x D V
62 60 61 fvmpt2d φ n G n = x S | F n = x D
63 62 eqcomd φ n x S | F n = x D = G n
64 59 63 eleq12d φ n E n x S | F n = x D H G n G n
65 47 64 mpbird φ n E n x S | F n = x D
66 ineq1 x = E n x D = E n D
67 66 eqeq2d x = E n F n = x D F n = E n D
68 67 elrab E n x S | F n = x D E n S F n = E n D
69 65 68 sylib φ n E n S F n = E n D
70 69 simprd φ n F n = E n D
71 70 ralrimiva φ n F n = E n D
72 fveq1 e = E e n = E n
73 72 ineq1d e = E e n D = E n D
74 73 eqeq2d e = E F n = e n D F n = E n D
75 74 ralbidv e = E n F n = e n D n F n = E n D
76 75 rspcev E S n F n = E n D e S n F n = e n D
77 40 71 76 syl2anc φ e S n F n = e n D