| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsaliuncllem.f |
|
| 2 |
|
subsaliuncllem.s |
|
| 3 |
|
subsaliuncllem.g |
|
| 4 |
|
subsaliuncllem.e |
|
| 5 |
|
subsaliuncllem.h |
|
| 6 |
|
subsaliuncllem.y |
|
| 7 |
|
vex |
|
| 8 |
3
|
elrnmpt |
|
| 9 |
7 8
|
ax-mp |
|
| 10 |
9
|
biimpi |
|
| 11 |
|
id |
|
| 12 |
|
ssrab2 |
|
| 13 |
12
|
a1i |
|
| 14 |
11 13
|
eqsstrd |
|
| 15 |
14
|
a1i |
|
| 16 |
15
|
rexlimiv |
|
| 17 |
16
|
a1i |
|
| 18 |
10 17
|
mpd |
|
| 19 |
18
|
adantl |
|
| 20 |
6
|
r19.21bi |
|
| 21 |
19 20
|
sseldd |
|
| 22 |
21
|
ex |
|
| 23 |
1 22
|
ralrimi |
|
| 24 |
5 23
|
jca |
|
| 25 |
|
ffnfv |
|
| 26 |
24 25
|
sylibr |
|
| 27 |
|
eqid |
|
| 28 |
27 2
|
rabexd |
|
| 29 |
28
|
ralrimivw |
|
| 30 |
3
|
fnmpt |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
dffn3 |
|
| 33 |
31 32
|
sylib |
|
| 34 |
|
fco |
|
| 35 |
26 33 34
|
syl2anc |
|
| 36 |
|
nnex |
|
| 37 |
36
|
a1i |
|
| 38 |
2 37
|
elmapd |
|
| 39 |
35 38
|
mpbird |
|
| 40 |
4 39
|
eqeltrid |
|
| 41 |
33
|
ffvelcdmda |
|
| 42 |
6
|
adantr |
|
| 43 |
|
fveq2 |
|
| 44 |
|
id |
|
| 45 |
43 44
|
eleq12d |
|
| 46 |
45
|
rspcva |
|
| 47 |
41 42 46
|
syl2anc |
|
| 48 |
33
|
ffund |
|
| 49 |
48
|
adantr |
|
| 50 |
|
simpr |
|
| 51 |
3
|
dmeqi |
|
| 52 |
51
|
a1i |
|
| 53 |
|
dmmptg |
|
| 54 |
29 53
|
syl |
|
| 55 |
52 54
|
eqtrd |
|
| 56 |
55
|
eqcomd |
|
| 57 |
56
|
adantr |
|
| 58 |
50 57
|
eleqtrd |
|
| 59 |
49 58 4
|
fvcod |
|
| 60 |
3
|
a1i |
|
| 61 |
28
|
adantr |
|
| 62 |
60 61
|
fvmpt2d |
|
| 63 |
62
|
eqcomd |
|
| 64 |
59 63
|
eleq12d |
|
| 65 |
47 64
|
mpbird |
|
| 66 |
|
ineq1 |
|
| 67 |
66
|
eqeq2d |
|
| 68 |
67
|
elrab |
|
| 69 |
65 68
|
sylib |
|
| 70 |
69
|
simprd |
|
| 71 |
70
|
ralrimiva |
|
| 72 |
|
fveq1 |
|
| 73 |
72
|
ineq1d |
|
| 74 |
73
|
eqeq2d |
|
| 75 |
74
|
ralbidv |
|
| 76 |
75
|
rspcev |
|
| 77 |
40 71 76
|
syl2anc |
|