Metamath Proof Explorer


Theorem subsaliuncl

Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsaliuncl.1 φ S SAlg
subsaliuncl.2 φ D V
subsaliuncl.3 T = S 𝑡 D
subsaliuncl.4 φ F : T
Assertion subsaliuncl φ n F n T

Proof

Step Hyp Ref Expression
1 subsaliuncl.1 φ S SAlg
2 subsaliuncl.2 φ D V
3 subsaliuncl.3 T = S 𝑡 D
4 subsaliuncl.4 φ F : T
5 eqid x S | F n = x D = x S | F n = x D
6 5 1 rabexd φ x S | F n = x D V
7 6 ralrimivw φ n x S | F n = x D V
8 eqid n x S | F n = x D = n x S | F n = x D
9 8 fnmpt n x S | F n = x D V n x S | F n = x D Fn
10 7 9 syl φ n x S | F n = x D Fn
11 nnex V
12 fnrndomg V n x S | F n = x D Fn ran n x S | F n = x D
13 11 12 ax-mp n x S | F n = x D Fn ran n x S | F n = x D
14 10 13 syl φ ran n x S | F n = x D
15 nnenom ω
16 15 a1i φ ω
17 domentr ran n x S | F n = x D ω ran n x S | F n = x D ω
18 14 16 17 syl2anc φ ran n x S | F n = x D ω
19 vex y V
20 8 elrnmpt y V y ran n x S | F n = x D n y = x S | F n = x D
21 19 20 ax-mp y ran n x S | F n = x D n y = x S | F n = x D
22 21 biimpi y ran n x S | F n = x D n y = x S | F n = x D
23 22 adantl φ y ran n x S | F n = x D n y = x S | F n = x D
24 simp3 φ n y = x S | F n = x D y = x S | F n = x D
25 4 ffvelrnda φ n F n T
26 25 3 eleqtrdi φ n F n S 𝑡 D
27 2 elexd φ D V
28 elrest S SAlg D V F n S 𝑡 D x S F n = x D
29 1 27 28 syl2anc φ F n S 𝑡 D x S F n = x D
30 29 adantr φ n F n S 𝑡 D x S F n = x D
31 26 30 mpbid φ n x S F n = x D
32 rabn0 x S | F n = x D x S F n = x D
33 31 32 sylibr φ n x S | F n = x D
34 33 3adant3 φ n y = x S | F n = x D x S | F n = x D
35 24 34 eqnetrd φ n y = x S | F n = x D y
36 35 3exp φ n y = x S | F n = x D y
37 36 rexlimdv φ n y = x S | F n = x D y
38 37 adantr φ y ran n x S | F n = x D n y = x S | F n = x D y
39 23 38 mpd φ y ran n x S | F n = x D y
40 18 39 axccdom φ f f Fn ran n x S | F n = x D y ran n x S | F n = x D f y y
41 simpl φ f Fn ran n x S | F n = x D y ran n x S | F n = x D f y y φ
42 fveq2 n = m F n = F m
43 42 eqeq1d n = m F n = x D F m = x D
44 43 rabbidv n = m x S | F n = x D = x S | F m = x D
45 44 cbvmptv n x S | F n = x D = m x S | F m = x D
46 45 rneqi ran n x S | F n = x D = ran m x S | F m = x D
47 46 fneq2i f Fn ran n x S | F n = x D f Fn ran m x S | F m = x D
48 47 biimpi f Fn ran n x S | F n = x D f Fn ran m x S | F m = x D
49 48 ad2antrl φ f Fn ran n x S | F n = x D y ran n x S | F n = x D f y y f Fn ran m x S | F m = x D
50 46 raleqi y ran n x S | F n = x D f y y y ran m x S | F m = x D f y y
51 50 biimpi y ran n x S | F n = x D f y y y ran m x S | F m = x D f y y
52 51 adantl φ y ran n x S | F n = x D f y y y ran m x S | F m = x D f y y
53 52 adantrl φ f Fn ran n x S | F n = x D y ran n x S | F n = x D f y y y ran m x S | F m = x D f y y
54 nfv z φ f Fn ran m x S | F m = x D y ran m x S | F m = x D f y y
55 1 3ad2ant1 φ f Fn ran m x S | F m = x D y ran m x S | F m = x D f y y S SAlg
56 ineq1 x = z x D = z D
57 56 eqeq2d x = z F m = x D F m = z D
58 57 cbvrabv x S | F m = x D = z S | F m = z D
59 58 mpteq2i m x S | F m = x D = m z S | F m = z D
60 45 59 eqtr2i m z S | F m = z D = n x S | F n = x D
61 60 coeq2i f m z S | F m = z D = f n x S | F n = x D
62 47 biimpri f Fn ran m x S | F m = x D f Fn ran n x S | F n = x D
63 62 3ad2ant2 φ f Fn ran m x S | F m = x D y ran m x S | F m = x D f y y f Fn ran n x S | F n = x D
64 46 eqcomi ran m x S | F m = x D = ran n x S | F n = x D
65 64 raleqi y ran m x S | F m = x D f y y y ran n x S | F n = x D f y y
66 fveq2 y = z f y = f z
67 id y = z y = z
68 66 67 eleq12d y = z f y y f z z
69 68 cbvralvw y ran n x S | F n = x D f y y z ran n x S | F n = x D f z z
70 65 69 bitri y ran m x S | F m = x D f y y z ran n x S | F n = x D f z z
71 70 biimpi y ran m x S | F m = x D f y y z ran n x S | F n = x D f z z
72 71 3ad2ant3 φ f Fn ran m x S | F m = x D y ran m x S | F m = x D f y y z ran n x S | F n = x D f z z
73 54 55 8 61 63 72 subsaliuncllem φ f Fn ran m x S | F m = x D y ran m x S | F m = x D f y y e S n F n = e n D
74 41 49 53 73 syl3anc φ f Fn ran n x S | F n = x D y ran n x S | F n = x D f y y e S n F n = e n D
75 74 ex φ f Fn ran n x S | F n = x D y ran n x S | F n = x D f y y e S n F n = e n D
76 75 exlimdv φ f f Fn ran n x S | F n = x D y ran n x S | F n = x D f y y e S n F n = e n D
77 40 76 mpd φ e S n F n = e n D
78 1 3ad2ant1 φ e S n F n = e n D S SAlg
79 27 3ad2ant1 φ e S n F n = e n D D V
80 1 adantr φ e S S SAlg
81 nnct ω
82 81 a1i φ e S ω
83 elmapi e S e : S
84 83 adantl φ e S e : S
85 84 ffvelrnda φ e S n e n S
86 80 82 85 saliuncl φ e S n e n S
87 86 3adant3 φ e S n F n = e n D n e n S
88 eqid n e n D = n e n D
89 78 79 87 88 elrestd φ e S n F n = e n D n e n D S 𝑡 D
90 nfra1 n n F n = e n D
91 rspa n F n = e n D n F n = e n D
92 90 91 iuneq2df n F n = e n D n F n = n e n D
93 iunin1 n e n D = n e n D
94 93 a1i n F n = e n D n e n D = n e n D
95 92 94 eqtrd n F n = e n D n F n = n e n D
96 95 3ad2ant3 φ e S n F n = e n D n F n = n e n D
97 3 a1i φ e S n F n = e n D T = S 𝑡 D
98 96 97 eleq12d φ e S n F n = e n D n F n T n e n D S 𝑡 D
99 89 98 mpbird φ e S n F n = e n D n F n T
100 99 3exp φ e S n F n = e n D n F n T
101 100 rexlimdv φ e S n F n = e n D n F n T
102 77 101 mpd φ n F n T