| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axccdom.1 |
|
| 2 |
|
axccdom.2 |
|
| 3 |
|
simpr |
|
| 4 |
|
simpr |
|
| 5 |
2
|
adantlr |
|
| 6 |
3 4 5
|
choicefi |
|
| 7 |
1
|
adantr |
|
| 8 |
|
isfinite2 |
|
| 9 |
8
|
con3i |
|
| 10 |
9
|
adantl |
|
| 11 |
7 10
|
jca |
|
| 12 |
|
bren2 |
|
| 13 |
11 12
|
sylibr |
|
| 14 |
|
ctex |
|
| 15 |
1 14
|
syl |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
|
breq1 |
|
| 19 |
|
raleq |
|
| 20 |
19
|
exbidv |
|
| 21 |
18 20
|
imbi12d |
|
| 22 |
|
ax-cc |
|
| 23 |
21 22
|
vtoclg |
|
| 24 |
16 17 23
|
sylc |
|
| 25 |
15
|
mptexd |
|
| 26 |
25
|
adantr |
|
| 27 |
|
fvex |
|
| 28 |
27
|
rgenw |
|
| 29 |
|
eqid |
|
| 30 |
29
|
fnmpt |
|
| 31 |
28 30
|
ax-mp |
|
| 32 |
31
|
a1i |
|
| 33 |
|
nfv |
|
| 34 |
|
nfra1 |
|
| 35 |
33 34
|
nfan |
|
| 36 |
|
id |
|
| 37 |
27
|
a1i |
|
| 38 |
29
|
fvmpt2 |
|
| 39 |
36 37 38
|
syl2anc |
|
| 40 |
39
|
adantl |
|
| 41 |
|
rspa |
|
| 42 |
41
|
adantll |
|
| 43 |
2
|
adantlr |
|
| 44 |
|
id |
|
| 45 |
42 43 44
|
sylc |
|
| 46 |
40 45
|
eqeltrd |
|
| 47 |
46
|
ex |
|
| 48 |
35 47
|
ralrimi |
|
| 49 |
32 48
|
jca |
|
| 50 |
|
fneq1 |
|
| 51 |
|
nfcv |
|
| 52 |
|
nfmpt1 |
|
| 53 |
51 52
|
nfeq |
|
| 54 |
|
fveq1 |
|
| 55 |
54
|
eleq1d |
|
| 56 |
53 55
|
ralbid |
|
| 57 |
50 56
|
anbi12d |
|
| 58 |
57
|
spcegv |
|
| 59 |
26 49 58
|
sylc |
|
| 60 |
59
|
adantlr |
|
| 61 |
60
|
ex |
|
| 62 |
61
|
exlimdv |
|
| 63 |
24 62
|
mpd |
|
| 64 |
13 63
|
syldan |
|
| 65 |
6 64
|
pm2.61dan |
|