Metamath Proof Explorer


Theorem dmmptdff

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses dmmptdff.x xφ
dmmptdff.1 _xB
dmmptdff.a A=xBC
dmmptdff.c φxBCV
Assertion dmmptdff φdomA=B

Proof

Step Hyp Ref Expression
1 dmmptdff.x xφ
2 dmmptdff.1 _xB
3 dmmptdff.a A=xBC
4 dmmptdff.c φxBCV
5 3 dmmpt domA=xB|CV
6 4 elexd φxBCV
7 1 6 ralrimia φxBCV
8 2 rabid2f B=xB|CVxBCV
9 7 8 sylibr φB=xB|CV
10 5 9 eqtr4id φdomA=B