Metamath Proof Explorer


Theorem dmmptdf

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses dmmptdf.x xφ
dmmptdf.a A=xBC
dmmptdf.c φxBCV
Assertion dmmptdf φdomA=B

Proof

Step Hyp Ref Expression
1 dmmptdf.x xφ
2 dmmptdf.a A=xBC
3 dmmptdf.c φxBCV
4 nfcv _xB
5 1 4 2 3 dmmptdff φdomA=B