Metamath Proof Explorer


Theorem dmmptdf

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses dmmptdf.x 𝑥 𝜑
dmmptdf.a 𝐴 = ( 𝑥𝐵𝐶 )
dmmptdf.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝑉 )
Assertion dmmptdf ( 𝜑 → dom 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 dmmptdf.x 𝑥 𝜑
2 dmmptdf.a 𝐴 = ( 𝑥𝐵𝐶 )
3 dmmptdf.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝑉 )
4 nfcv 𝑥 𝐵
5 1 4 2 3 dmmptdff ( 𝜑 → dom 𝐴 = 𝐵 )