Metamath Proof Explorer
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
dmmptdf.x |
⊢ Ⅎ 𝑥 𝜑 |
|
|
dmmptdf.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
|
|
dmmptdf.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
|
Assertion |
dmmptdf |
⊢ ( 𝜑 → dom 𝐴 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dmmptdf.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
dmmptdf.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
3 |
|
dmmptdf.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
5 |
1 4 2 3
|
dmmptdff |
⊢ ( 𝜑 → dom 𝐴 = 𝐵 ) |