Metamath Proof Explorer


Theorem rabid2f

Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) (Revised by Thierry Arnoux, 13-Mar-2017)

Ref Expression
Hypothesis rabid2f.1 _xA
Assertion rabid2f A=xA|φxAφ

Proof

Step Hyp Ref Expression
1 rabid2f.1 _xA
2 1 eqabf A=x|xAφxxAxAφ
3 pm4.71 xAφxAxAφ
4 3 albii xxAφxxAxAφ
5 2 4 bitr4i A=x|xAφxxAφ
6 df-rab xA|φ=x|xAφ
7 6 eqeq2i A=xA|φA=x|xAφ
8 df-ral xAφxxAφ
9 5 7 8 3bitr4i A=xA|φxAφ