| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsalsal.1 |
|
| 2 |
|
subsalsal.2 |
|
| 3 |
|
subsalsal.3 |
|
| 4 |
3
|
ovexi |
|
| 5 |
4
|
a1i |
|
| 6 |
1
|
0sald |
|
| 7 |
|
0in |
|
| 8 |
7
|
eqcomi |
|
| 9 |
1 2 6 8
|
elrestd |
|
| 10 |
9 3
|
eleqtrrdi |
|
| 11 |
|
eqid |
|
| 12 |
|
id |
|
| 13 |
12 3
|
eleqtrdi |
|
| 14 |
13
|
adantl |
|
| 15 |
|
elrest |
|
| 16 |
1 2 15
|
syl2anc |
|
| 17 |
16
|
adantr |
|
| 18 |
14 17
|
mpbid |
|
| 19 |
1
|
adantr |
|
| 20 |
19
|
3adant3 |
|
| 21 |
2
|
3ad2ant1 |
|
| 22 |
|
simpr |
|
| 23 |
19 22
|
saldifcld |
|
| 24 |
23
|
3adant3 |
|
| 25 |
|
eqid |
|
| 26 |
20 21 24 25
|
elrestd |
|
| 27 |
3
|
unieqi |
|
| 28 |
27
|
a1i |
|
| 29 |
1 2
|
restuni3 |
|
| 30 |
28 29
|
eqtrd |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
31 32
|
difeq12d |
|
| 34 |
|
indifdir |
|
| 35 |
34
|
eqcomi |
|
| 36 |
35
|
a1i |
|
| 37 |
33 36
|
eqtrd |
|
| 38 |
3
|
a1i |
|
| 39 |
37 38
|
eleq12d |
|
| 40 |
39
|
3adant2 |
|
| 41 |
26 40
|
mpbird |
|
| 42 |
41
|
3exp |
|
| 43 |
42
|
rexlimdv |
|
| 44 |
43
|
adantr |
|
| 45 |
18 44
|
mpd |
|
| 46 |
1
|
adantr |
|
| 47 |
2
|
adantr |
|
| 48 |
|
simpr |
|
| 49 |
46 47 3 48
|
subsaliuncl |
|
| 50 |
5 10 11 45 49
|
issalnnd |
|