Description: The underlying set of a subspace induced by the subspace operator ` |``t ` . The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | restuni3.1 | |
|
restuni3.2 | |
||
Assertion | restuni3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restuni3.1 | |
|
2 | restuni3.2 | |
|
3 | eluni2 | |
|
4 | 3 | biimpi | |
5 | 4 | adantl | |
6 | simpr | |
|
7 | elrest | |
|
8 | 1 2 7 | syl2anc | |
9 | 8 | adantr | |
10 | 6 9 | mpbid | |
11 | 10 | 3adant3 | |
12 | simpl | |
|
13 | simpr | |
|
14 | 12 13 | eleqtrd | |
15 | 14 | ex | |
16 | 15 | 3ad2ant3 | |
17 | 16 | reximdv | |
18 | 11 17 | mpd | |
19 | 18 | 3exp | |
20 | 19 | rexlimdv | |
21 | 20 | adantr | |
22 | 5 21 | mpd | |
23 | elinel1 | |
|
24 | 23 | adantl | |
25 | simpl | |
|
26 | elunii | |
|
27 | 24 25 26 | syl2anc | |
28 | elinel2 | |
|
29 | 28 | adantl | |
30 | 27 29 | elind | |
31 | 30 | ex | |
32 | 31 | adantl | |
33 | 32 | rexlimdva | |
34 | 22 33 | mpd | |
35 | 34 | ralrimiva | |
36 | dfss3 | |
|
37 | 35 36 | sylibr | |
38 | elinel1 | |
|
39 | eluni2 | |
|
40 | 38 39 | sylib | |
41 | 40 | adantl | |
42 | 1 | adantr | |
43 | 2 | adantr | |
44 | simpr | |
|
45 | eqid | |
|
46 | 42 43 44 45 | elrestd | |
47 | 46 | 3adant3 | |
48 | 47 | 3adant1r | |
49 | simp3 | |
|
50 | simp1r | |
|
51 | elinel2 | |
|
52 | 50 51 | syl | |
53 | simpl | |
|
54 | simpr | |
|
55 | 53 54 | elind | |
56 | 49 52 55 | syl2anc | |
57 | eleq2 | |
|
58 | 57 | rspcev | |
59 | 48 56 58 | syl2anc | |
60 | 59 | 3exp | |
61 | 60 | rexlimdv | |
62 | 41 61 | mpd | |
63 | 62 3 | sylibr | |
64 | 37 63 | eqelssd | |