Metamath Proof Explorer


Theorem restuni3

Description: The underlying set of a subspace induced by the subspace operator ` |``t ` . The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses restuni3.1 φAV
restuni3.2 φBW
Assertion restuni3 φA𝑡B=AB

Proof

Step Hyp Ref Expression
1 restuni3.1 φAV
2 restuni3.2 φBW
3 eluni2 xA𝑡ByA𝑡Bxy
4 3 biimpi xA𝑡ByA𝑡Bxy
5 4 adantl φxA𝑡ByA𝑡Bxy
6 simpr φyA𝑡ByA𝑡B
7 elrest AVBWyA𝑡BzAy=zB
8 1 2 7 syl2anc φyA𝑡BzAy=zB
9 8 adantr φyA𝑡ByA𝑡BzAy=zB
10 6 9 mpbid φyA𝑡BzAy=zB
11 10 3adant3 φyA𝑡BxyzAy=zB
12 simpl xyy=zBxy
13 simpr xyy=zBy=zB
14 12 13 eleqtrd xyy=zBxzB
15 14 ex xyy=zBxzB
16 15 3ad2ant3 φyA𝑡Bxyy=zBxzB
17 16 reximdv φyA𝑡BxyzAy=zBzAxzB
18 11 17 mpd φyA𝑡BxyzAxzB
19 18 3exp φyA𝑡BxyzAxzB
20 19 rexlimdv φyA𝑡BxyzAxzB
21 20 adantr φxA𝑡ByA𝑡BxyzAxzB
22 5 21 mpd φxA𝑡BzAxzB
23 elinel1 xzBxz
24 23 adantl zAxzBxz
25 simpl zAxzBzA
26 elunii xzzAxA
27 24 25 26 syl2anc zAxzBxA
28 elinel2 xzBxB
29 28 adantl zAxzBxB
30 27 29 elind zAxzBxAB
31 30 ex zAxzBxAB
32 31 adantl φxA𝑡BzAxzBxAB
33 32 rexlimdva φxA𝑡BzAxzBxAB
34 22 33 mpd φxA𝑡BxAB
35 34 ralrimiva φxA𝑡BxAB
36 dfss3 A𝑡BABxA𝑡BxAB
37 35 36 sylibr φA𝑡BAB
38 elinel1 xABxA
39 eluni2 xAzAxz
40 38 39 sylib xABzAxz
41 40 adantl φxABzAxz
42 1 adantr φzAAV
43 2 adantr φzABW
44 simpr φzAzA
45 eqid zB=zB
46 42 43 44 45 elrestd φzAzBA𝑡B
47 46 3adant3 φzAxzzBA𝑡B
48 47 3adant1r φxABzAxzzBA𝑡B
49 simp3 φxABzAxzxz
50 simp1r φxABzAxzxAB
51 elinel2 xABxB
52 50 51 syl φxABzAxzxB
53 simpl xzxBxz
54 simpr xzxBxB
55 53 54 elind xzxBxzB
56 49 52 55 syl2anc φxABzAxzxzB
57 eleq2 y=zBxyxzB
58 57 rspcev zBA𝑡BxzByA𝑡Bxy
59 48 56 58 syl2anc φxABzAxzyA𝑡Bxy
60 59 3exp φxABzAxzyA𝑡Bxy
61 60 rexlimdv φxABzAxzyA𝑡Bxy
62 41 61 mpd φxAByA𝑡Bxy
63 62 3 sylibr φxABxA𝑡B
64 37 63 eqelssd φA𝑡B=AB