Metamath Proof Explorer


Theorem elrestd

Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses elrestd.1 φ J V
elrestd.2 φ B W
elrestd.3 φ X J
elrestd.4 A = X B
Assertion elrestd φ A J 𝑡 B

Proof

Step Hyp Ref Expression
1 elrestd.1 φ J V
2 elrestd.2 φ B W
3 elrestd.3 φ X J
4 elrestd.4 A = X B
5 4 a1i φ A = X B
6 ineq1 x = X x B = X B
7 6 rspceeqv X J A = X B x J A = x B
8 3 5 7 syl2anc φ x J A = x B
9 elrest J V B W A J 𝑡 B x J A = x B
10 1 2 9 syl2anc φ A J 𝑡 B x J A = x B
11 8 10 mpbird φ A J 𝑡 B