Metamath Proof Explorer


Theorem eliuniincex

Description: Counterexample to show that the additional conditions in eliuniin and eliuniin2 are actually needed. Notice that the definition of A is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eliuniincex.1 B=
eliuniincex.2 C=
eliuniincex.3 D=
eliuniincex.4 Z=V
Assertion eliuniincex ¬ZAxByCZD

Proof

Step Hyp Ref Expression
1 eliuniincex.1 B=
2 eliuniincex.2 C=
3 eliuniincex.3 D=
4 eliuniincex.4 Z=V
5 nvel ¬VA
6 4 5 eqneltri ¬ZA
7 0ex V
8 7 snid
9 8 1 eleqtrri B
10 ral0 yZD
11 nfcv _x
12 nfcv _xZ
13 3 11 nfcxfr _xD
14 12 13 nfel xZD
15 11 14 nfral xyZD
16 2 raleqi yCZDyZD
17 16 a1i x=yCZDyZD
18 15 17 rspce ByZDxByCZD
19 9 10 18 mp2an xByCZD
20 pm3.22 ¬ZAxByCZDxByCZD¬ZA
21 20 olcd ¬ZAxByCZDZA¬xByCZDxByCZD¬ZA
22 xor ¬ZAxByCZDZA¬xByCZDxByCZD¬ZA
23 21 22 sylibr ¬ZAxByCZD¬ZAxByCZD
24 6 19 23 mp2an ¬ZAxByCZD