Metamath Proof Explorer


Theorem eliuniin2

Description: Indexed union of indexed intersections. See eliincex for a counterexample showing that the precondition C =/= (/) cannot be simply dropped. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eliuniin2.1 _xC
eliuniin2.2 A=xByCD
Assertion eliuniin2 CZAxByCZD

Proof

Step Hyp Ref Expression
1 eliuniin2.1 _xC
2 eliuniin2.2 A=xByCD
3 2 eleq2i ZAZxByCD
4 eliun ZxByCDxBZyCD
5 3 4 sylbb ZAxBZyCD
6 eliin ZyCDZyCDyCZD
7 6 ibi ZyCDyCZD
8 7 a1i ZAZyCDyCZD
9 8 reximdv ZAxBZyCDxByCZD
10 5 9 mpd ZAxByCZD
11 nfcv _x
12 1 11 nfne xC
13 nfv xZA
14 simp2 CxByCZDxB
15 eliin2 CZyCDyCZD
16 15 biimpar CyCZDZyCD
17 rspe xBZyCDxBZyCD
18 14 16 17 3imp3i2an CxByCZDxBZyCD
19 18 4 sylibr CxByCZDZxByCD
20 19 3 sylibr CxByCZDZA
21 20 3exp CxByCZDZA
22 12 13 21 rexlimd CxByCZDZA
23 10 22 impbid2 CZAxByCZD