Metamath Proof Explorer


Theorem restuni4

Description: The underlying set of a subspace induced by the ` |``t ` operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses restuni4.1 φAV
restuni4.2 φBA
Assertion restuni4 φA𝑡B=B

Proof

Step Hyp Ref Expression
1 restuni4.1 φAV
2 restuni4.2 φBA
3 incom BA=AB
4 3 a1i φBA=AB
5 dfss BAB=BA
6 2 5 sylib φB=BA
7 1 uniexd φAV
8 7 2 ssexd φBV
9 1 8 restuni3 φA𝑡B=AB
10 4 6 9 3eqtr4rd φA𝑡B=B