Metamath Proof Explorer


Theorem restuni6

Description: The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses restuni6.1 φAV
restuni6.2 φBW
Assertion restuni6 φA𝑡B=AB

Proof

Step Hyp Ref Expression
1 restuni6.1 φAV
2 restuni6.2 φBW
3 eqid A=A
4 3 restin AVBWA𝑡B=A𝑡BA
5 1 2 4 syl2anc φA𝑡B=A𝑡BA
6 5 unieqd φA𝑡B=A𝑡BA
7 inss2 BAA
8 7 a1i φBAA
9 1 8 restuni4 φA𝑡BA=BA
10 incom BA=AB
11 10 a1i φBA=AB
12 6 9 11 3eqtrd φA𝑡B=AB