Metamath Proof Explorer


Theorem eliuniin

Description: Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis eliuniin.1 A=xByCD
Assertion eliuniin ZVZAxByCZD

Proof

Step Hyp Ref Expression
1 eliuniin.1 A=xByCD
2 1 eleq2i ZAZxByCD
3 eliun ZxByCDxBZyCD
4 2 3 sylbb ZAxBZyCD
5 eliin ZyCDZyCDyCZD
6 5 ibi ZyCDyCZD
7 6 a1i ZAZyCDyCZD
8 7 reximdv ZAxBZyCDxByCZD
9 4 8 mpd ZAxByCZD
10 simp2 ZVxByCZDxB
11 eliin ZVZyCDyCZD
12 11 biimpar ZVyCZDZyCD
13 rspe xBZyCDxBZyCD
14 10 12 13 3imp3i2an ZVxByCZDxBZyCD
15 14 3 sylibr ZVxByCZDZxByCD
16 15 2 sylibr ZVxByCZDZA
17 16 rexlimdv3a ZVxByCZDZA
18 9 17 impbid2 ZVZAxByCZD