Metamath Proof Explorer


Theorem ssabf

Description: Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis ssabf.1 _xA
Assertion ssabf Ax|φxxAφ

Proof

Step Hyp Ref Expression
1 ssabf.1 _xA
2 1 abid2f x|xA=A
3 2 sseq1i x|xAx|φAx|φ
4 ss2ab x|xAx|φxxAφ
5 3 4 bitr3i Ax|φxxAφ