Description: Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssabf.1 | |- F/_ x A |
|
Assertion | ssabf | |- ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssabf.1 | |- F/_ x A |
|
2 | 1 | abid2f | |- { x | x e. A } = A |
3 | 2 | sseq1i | |- ( { x | x e. A } C_ { x | ph } <-> A C_ { x | ph } ) |
4 | ss2ab | |- ( { x | x e. A } C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |
|
5 | 3 4 | bitr3i | |- ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) ) |