Metamath Proof Explorer


Theorem pssnssi

Description: A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis pssnssi.1 AB
Assertion pssnssi ¬BA

Proof

Step Hyp Ref Expression
1 pssnssi.1 AB
2 dfpss3 ABAB¬BA
3 1 2 mpbi AB¬BA
4 3 simpri ¬BA