| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliuniincex.1 |
⊢ 𝐵 = { ∅ } |
| 2 |
|
eliuniincex.2 |
⊢ 𝐶 = ∅ |
| 3 |
|
eliuniincex.3 |
⊢ 𝐷 = ∅ |
| 4 |
|
eliuniincex.4 |
⊢ 𝑍 = V |
| 5 |
|
nvel |
⊢ ¬ V ∈ 𝐴 |
| 6 |
4 5
|
eqneltri |
⊢ ¬ 𝑍 ∈ 𝐴 |
| 7 |
|
0ex |
⊢ ∅ ∈ V |
| 8 |
7
|
snid |
⊢ ∅ ∈ { ∅ } |
| 9 |
8 1
|
eleqtrri |
⊢ ∅ ∈ 𝐵 |
| 10 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ 𝑍 ∈ 𝐷 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 13 |
3 11
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 14 |
12 13
|
nfel |
⊢ Ⅎ 𝑥 𝑍 ∈ 𝐷 |
| 15 |
11 14
|
nfral |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ ∅ 𝑍 ∈ 𝐷 |
| 16 |
2
|
raleqi |
⊢ ( ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ↔ ∀ 𝑦 ∈ ∅ 𝑍 ∈ 𝐷 ) |
| 17 |
16
|
a1i |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ↔ ∀ 𝑦 ∈ ∅ 𝑍 ∈ 𝐷 ) ) |
| 18 |
15 17
|
rspce |
⊢ ( ( ∅ ∈ 𝐵 ∧ ∀ 𝑦 ∈ ∅ 𝑍 ∈ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) |
| 19 |
9 10 18
|
mp2an |
⊢ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 |
| 20 |
|
pm3.22 |
⊢ ( ( ¬ 𝑍 ∈ 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) → ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ∧ ¬ 𝑍 ∈ 𝐴 ) ) |
| 21 |
20
|
olcd |
⊢ ( ( ¬ 𝑍 ∈ 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) → ( ( 𝑍 ∈ 𝐴 ∧ ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ∨ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ∧ ¬ 𝑍 ∈ 𝐴 ) ) ) |
| 22 |
|
xor |
⊢ ( ¬ ( 𝑍 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ↔ ( ( 𝑍 ∈ 𝐴 ∧ ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ∨ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ∧ ¬ 𝑍 ∈ 𝐴 ) ) ) |
| 23 |
21 22
|
sylibr |
⊢ ( ( ¬ 𝑍 ∈ 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) → ¬ ( 𝑍 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) ) |
| 24 |
6 19 23
|
mp2an |
⊢ ¬ ( 𝑍 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ) |