Metamath Proof Explorer


Theorem eliuniincex

Description: Counterexample to show that the additional conditions in eliuniin and eliuniin2 are actually needed. Notice that the definition of A is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eliuniincex.1 𝐵 = { ∅ }
eliuniincex.2 𝐶 = ∅
eliuniincex.3 𝐷 = ∅
eliuniincex.4 𝑍 = V
Assertion eliuniincex ¬ ( 𝑍𝐴 ↔ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 )

Proof

Step Hyp Ref Expression
1 eliuniincex.1 𝐵 = { ∅ }
2 eliuniincex.2 𝐶 = ∅
3 eliuniincex.3 𝐷 = ∅
4 eliuniincex.4 𝑍 = V
5 nvel ¬ V ∈ 𝐴
6 4 5 eqneltri ¬ 𝑍𝐴
7 0ex ∅ ∈ V
8 7 snid ∅ ∈ { ∅ }
9 8 1 eleqtrri ∅ ∈ 𝐵
10 ral0 𝑦 ∈ ∅ 𝑍𝐷
11 nfcv 𝑥
12 nfcv 𝑥 𝑍
13 3 11 nfcxfr 𝑥 𝐷
14 12 13 nfel 𝑥 𝑍𝐷
15 11 14 nfral 𝑥𝑦 ∈ ∅ 𝑍𝐷
16 2 raleqi ( ∀ 𝑦𝐶 𝑍𝐷 ↔ ∀ 𝑦 ∈ ∅ 𝑍𝐷 )
17 16 a1i ( 𝑥 = ∅ → ( ∀ 𝑦𝐶 𝑍𝐷 ↔ ∀ 𝑦 ∈ ∅ 𝑍𝐷 ) )
18 15 17 rspce ( ( ∅ ∈ 𝐵 ∧ ∀ 𝑦 ∈ ∅ 𝑍𝐷 ) → ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 )
19 9 10 18 mp2an 𝑥𝐵𝑦𝐶 𝑍𝐷
20 pm3.22 ( ( ¬ 𝑍𝐴 ∧ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) → ( ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ∧ ¬ 𝑍𝐴 ) )
21 20 olcd ( ( ¬ 𝑍𝐴 ∧ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) → ( ( 𝑍𝐴 ∧ ¬ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) ∨ ( ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ∧ ¬ 𝑍𝐴 ) ) )
22 xor ( ¬ ( 𝑍𝐴 ↔ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) ↔ ( ( 𝑍𝐴 ∧ ¬ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) ∨ ( ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ∧ ¬ 𝑍𝐴 ) ) )
23 21 22 sylibr ( ( ¬ 𝑍𝐴 ∧ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) → ¬ ( 𝑍𝐴 ↔ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 ) )
24 6 19 23 mp2an ¬ ( 𝑍𝐴 ↔ ∃ 𝑥𝐵𝑦𝐶 𝑍𝐷 )