Metamath Proof Explorer


Theorem restuni3

Description: The underlying set of a subspace induced by the subspace operator ` |``t ` . The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses restuni3.1 ( 𝜑𝐴𝑉 )
restuni3.2 ( 𝜑𝐵𝑊 )
Assertion restuni3 ( 𝜑 ( 𝐴t 𝐵 ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 restuni3.1 ( 𝜑𝐴𝑉 )
2 restuni3.2 ( 𝜑𝐵𝑊 )
3 eluni2 ( 𝑥 ( 𝐴t 𝐵 ) ↔ ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 )
4 3 biimpi ( 𝑥 ( 𝐴t 𝐵 ) → ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 )
5 4 adantl ( ( 𝜑𝑥 ( 𝐴t 𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 )
6 simpr ( ( 𝜑𝑦 ∈ ( 𝐴t 𝐵 ) ) → 𝑦 ∈ ( 𝐴t 𝐵 ) )
7 elrest ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑦 ∈ ( 𝐴t 𝐵 ) ↔ ∃ 𝑧𝐴 𝑦 = ( 𝑧𝐵 ) ) )
8 1 2 7 syl2anc ( 𝜑 → ( 𝑦 ∈ ( 𝐴t 𝐵 ) ↔ ∃ 𝑧𝐴 𝑦 = ( 𝑧𝐵 ) ) )
9 8 adantr ( ( 𝜑𝑦 ∈ ( 𝐴t 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴t 𝐵 ) ↔ ∃ 𝑧𝐴 𝑦 = ( 𝑧𝐵 ) ) )
10 6 9 mpbid ( ( 𝜑𝑦 ∈ ( 𝐴t 𝐵 ) ) → ∃ 𝑧𝐴 𝑦 = ( 𝑧𝐵 ) )
11 10 3adant3 ( ( 𝜑𝑦 ∈ ( 𝐴t 𝐵 ) ∧ 𝑥𝑦 ) → ∃ 𝑧𝐴 𝑦 = ( 𝑧𝐵 ) )
12 simpl ( ( 𝑥𝑦𝑦 = ( 𝑧𝐵 ) ) → 𝑥𝑦 )
13 simpr ( ( 𝑥𝑦𝑦 = ( 𝑧𝐵 ) ) → 𝑦 = ( 𝑧𝐵 ) )
14 12 13 eleqtrd ( ( 𝑥𝑦𝑦 = ( 𝑧𝐵 ) ) → 𝑥 ∈ ( 𝑧𝐵 ) )
15 14 ex ( 𝑥𝑦 → ( 𝑦 = ( 𝑧𝐵 ) → 𝑥 ∈ ( 𝑧𝐵 ) ) )
16 15 3ad2ant3 ( ( 𝜑𝑦 ∈ ( 𝐴t 𝐵 ) ∧ 𝑥𝑦 ) → ( 𝑦 = ( 𝑧𝐵 ) → 𝑥 ∈ ( 𝑧𝐵 ) ) )
17 16 reximdv ( ( 𝜑𝑦 ∈ ( 𝐴t 𝐵 ) ∧ 𝑥𝑦 ) → ( ∃ 𝑧𝐴 𝑦 = ( 𝑧𝐵 ) → ∃ 𝑧𝐴 𝑥 ∈ ( 𝑧𝐵 ) ) )
18 11 17 mpd ( ( 𝜑𝑦 ∈ ( 𝐴t 𝐵 ) ∧ 𝑥𝑦 ) → ∃ 𝑧𝐴 𝑥 ∈ ( 𝑧𝐵 ) )
19 18 3exp ( 𝜑 → ( 𝑦 ∈ ( 𝐴t 𝐵 ) → ( 𝑥𝑦 → ∃ 𝑧𝐴 𝑥 ∈ ( 𝑧𝐵 ) ) ) )
20 19 rexlimdv ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 → ∃ 𝑧𝐴 𝑥 ∈ ( 𝑧𝐵 ) ) )
21 20 adantr ( ( 𝜑𝑥 ( 𝐴t 𝐵 ) ) → ( ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 → ∃ 𝑧𝐴 𝑥 ∈ ( 𝑧𝐵 ) ) )
22 5 21 mpd ( ( 𝜑𝑥 ( 𝐴t 𝐵 ) ) → ∃ 𝑧𝐴 𝑥 ∈ ( 𝑧𝐵 ) )
23 elinel1 ( 𝑥 ∈ ( 𝑧𝐵 ) → 𝑥𝑧 )
24 23 adantl ( ( 𝑧𝐴𝑥 ∈ ( 𝑧𝐵 ) ) → 𝑥𝑧 )
25 simpl ( ( 𝑧𝐴𝑥 ∈ ( 𝑧𝐵 ) ) → 𝑧𝐴 )
26 elunii ( ( 𝑥𝑧𝑧𝐴 ) → 𝑥 𝐴 )
27 24 25 26 syl2anc ( ( 𝑧𝐴𝑥 ∈ ( 𝑧𝐵 ) ) → 𝑥 𝐴 )
28 elinel2 ( 𝑥 ∈ ( 𝑧𝐵 ) → 𝑥𝐵 )
29 28 adantl ( ( 𝑧𝐴𝑥 ∈ ( 𝑧𝐵 ) ) → 𝑥𝐵 )
30 27 29 elind ( ( 𝑧𝐴𝑥 ∈ ( 𝑧𝐵 ) ) → 𝑥 ∈ ( 𝐴𝐵 ) )
31 30 ex ( 𝑧𝐴 → ( 𝑥 ∈ ( 𝑧𝐵 ) → 𝑥 ∈ ( 𝐴𝐵 ) ) )
32 31 adantl ( ( ( 𝜑𝑥 ( 𝐴t 𝐵 ) ) ∧ 𝑧𝐴 ) → ( 𝑥 ∈ ( 𝑧𝐵 ) → 𝑥 ∈ ( 𝐴𝐵 ) ) )
33 32 rexlimdva ( ( 𝜑𝑥 ( 𝐴t 𝐵 ) ) → ( ∃ 𝑧𝐴 𝑥 ∈ ( 𝑧𝐵 ) → 𝑥 ∈ ( 𝐴𝐵 ) ) )
34 22 33 mpd ( ( 𝜑𝑥 ( 𝐴t 𝐵 ) ) → 𝑥 ∈ ( 𝐴𝐵 ) )
35 34 ralrimiva ( 𝜑 → ∀ 𝑥 ( 𝐴t 𝐵 ) 𝑥 ∈ ( 𝐴𝐵 ) )
36 dfss3 ( ( 𝐴t 𝐵 ) ⊆ ( 𝐴𝐵 ) ↔ ∀ 𝑥 ( 𝐴t 𝐵 ) 𝑥 ∈ ( 𝐴𝐵 ) )
37 35 36 sylibr ( 𝜑 ( 𝐴t 𝐵 ) ⊆ ( 𝐴𝐵 ) )
38 elinel1 ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥 𝐴 )
39 eluni2 ( 𝑥 𝐴 ↔ ∃ 𝑧𝐴 𝑥𝑧 )
40 38 39 sylib ( 𝑥 ∈ ( 𝐴𝐵 ) → ∃ 𝑧𝐴 𝑥𝑧 )
41 40 adantl ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) → ∃ 𝑧𝐴 𝑥𝑧 )
42 1 adantr ( ( 𝜑𝑧𝐴 ) → 𝐴𝑉 )
43 2 adantr ( ( 𝜑𝑧𝐴 ) → 𝐵𝑊 )
44 simpr ( ( 𝜑𝑧𝐴 ) → 𝑧𝐴 )
45 eqid ( 𝑧𝐵 ) = ( 𝑧𝐵 )
46 42 43 44 45 elrestd ( ( 𝜑𝑧𝐴 ) → ( 𝑧𝐵 ) ∈ ( 𝐴t 𝐵 ) )
47 46 3adant3 ( ( 𝜑𝑧𝐴𝑥𝑧 ) → ( 𝑧𝐵 ) ∈ ( 𝐴t 𝐵 ) )
48 47 3adant1r ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ 𝑧𝐴𝑥𝑧 ) → ( 𝑧𝐵 ) ∈ ( 𝐴t 𝐵 ) )
49 simp3 ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ 𝑧𝐴𝑥𝑧 ) → 𝑥𝑧 )
50 simp1r ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ 𝑧𝐴𝑥𝑧 ) → 𝑥 ∈ ( 𝐴𝐵 ) )
51 elinel2 ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥𝐵 )
52 50 51 syl ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ 𝑧𝐴𝑥𝑧 ) → 𝑥𝐵 )
53 simpl ( ( 𝑥𝑧𝑥𝐵 ) → 𝑥𝑧 )
54 simpr ( ( 𝑥𝑧𝑥𝐵 ) → 𝑥𝐵 )
55 53 54 elind ( ( 𝑥𝑧𝑥𝐵 ) → 𝑥 ∈ ( 𝑧𝐵 ) )
56 49 52 55 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ 𝑧𝐴𝑥𝑧 ) → 𝑥 ∈ ( 𝑧𝐵 ) )
57 eleq2 ( 𝑦 = ( 𝑧𝐵 ) → ( 𝑥𝑦𝑥 ∈ ( 𝑧𝐵 ) ) )
58 57 rspcev ( ( ( 𝑧𝐵 ) ∈ ( 𝐴t 𝐵 ) ∧ 𝑥 ∈ ( 𝑧𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 )
59 48 56 58 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) ∧ 𝑧𝐴𝑥𝑧 ) → ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 )
60 59 3exp ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) → ( 𝑧𝐴 → ( 𝑥𝑧 → ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 ) ) )
61 60 rexlimdv ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) → ( ∃ 𝑧𝐴 𝑥𝑧 → ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 ) )
62 41 61 mpd ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) → ∃ 𝑦 ∈ ( 𝐴t 𝐵 ) 𝑥𝑦 )
63 62 3 sylibr ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) → 𝑥 ( 𝐴t 𝐵 ) )
64 37 63 eqelssd ( 𝜑 ( 𝐴t 𝐵 ) = ( 𝐴𝐵 ) )