Metamath Proof Explorer


Theorem rabssf

Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis rabssf.1 𝑥 𝐵
Assertion rabssf ( { 𝑥𝐴𝜑 } ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝜑𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 rabssf.1 𝑥 𝐵
2 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
3 2 sseq1i ( { 𝑥𝐴𝜑 } ⊆ 𝐵 ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ 𝐵 )
4 1 abssf ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ 𝐵 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥𝐵 ) )
5 impexp ( ( ( 𝑥𝐴𝜑 ) → 𝑥𝐵 ) ↔ ( 𝑥𝐴 → ( 𝜑𝑥𝐵 ) ) )
6 5 albii ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝑥𝐵 ) ) )
7 df-ral ( ∀ 𝑥𝐴 ( 𝜑𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝑥𝐵 ) ) )
8 6 7 bitr4i ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝜑𝑥𝐵 ) )
9 3 4 8 3bitri ( { 𝑥𝐴𝜑 } ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝜑𝑥𝐵 ) )