Step |
Hyp |
Ref |
Expression |
1 |
|
rabssf.1 |
⊢ Ⅎ 𝑥 𝐵 |
2 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
3 |
2
|
sseq1i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐵 ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐵 ) |
4 |
1
|
abssf |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐵 ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ) |
5 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) ) |
7 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) ) |
8 |
6 7
|
bitr4i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |
9 |
3 4 8
|
3bitri |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |