Metamath Proof Explorer


Theorem subsalsal

Description: A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsalsal.1 ( 𝜑𝑆 ∈ SAlg )
subsalsal.2 ( 𝜑𝐷𝑉 )
subsalsal.3 𝑇 = ( 𝑆t 𝐷 )
Assertion subsalsal ( 𝜑𝑇 ∈ SAlg )

Proof

Step Hyp Ref Expression
1 subsalsal.1 ( 𝜑𝑆 ∈ SAlg )
2 subsalsal.2 ( 𝜑𝐷𝑉 )
3 subsalsal.3 𝑇 = ( 𝑆t 𝐷 )
4 3 ovexi 𝑇 ∈ V
5 4 a1i ( 𝜑𝑇 ∈ V )
6 1 0sald ( 𝜑 → ∅ ∈ 𝑆 )
7 0in ( ∅ ∩ 𝐷 ) = ∅
8 7 eqcomi ∅ = ( ∅ ∩ 𝐷 )
9 1 2 6 8 elrestd ( 𝜑 → ∅ ∈ ( 𝑆t 𝐷 ) )
10 9 3 eleqtrrdi ( 𝜑 → ∅ ∈ 𝑇 )
11 eqid 𝑇 = 𝑇
12 id ( 𝑥𝑇𝑥𝑇 )
13 12 3 eleqtrdi ( 𝑥𝑇𝑥 ∈ ( 𝑆t 𝐷 ) )
14 13 adantl ( ( 𝜑𝑥𝑇 ) → 𝑥 ∈ ( 𝑆t 𝐷 ) )
15 elrest ( ( 𝑆 ∈ SAlg ∧ 𝐷𝑉 ) → ( 𝑥 ∈ ( 𝑆t 𝐷 ) ↔ ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐷 ) ) )
16 1 2 15 syl2anc ( 𝜑 → ( 𝑥 ∈ ( 𝑆t 𝐷 ) ↔ ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐷 ) ) )
17 16 adantr ( ( 𝜑𝑥𝑇 ) → ( 𝑥 ∈ ( 𝑆t 𝐷 ) ↔ ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐷 ) ) )
18 14 17 mpbid ( ( 𝜑𝑥𝑇 ) → ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐷 ) )
19 1 adantr ( ( 𝜑𝑦𝑆 ) → 𝑆 ∈ SAlg )
20 19 3adant3 ( ( 𝜑𝑦𝑆𝑥 = ( 𝑦𝐷 ) ) → 𝑆 ∈ SAlg )
21 2 3ad2ant1 ( ( 𝜑𝑦𝑆𝑥 = ( 𝑦𝐷 ) ) → 𝐷𝑉 )
22 simpr ( ( 𝜑𝑦𝑆 ) → 𝑦𝑆 )
23 19 22 saldifcld ( ( 𝜑𝑦𝑆 ) → ( 𝑆𝑦 ) ∈ 𝑆 )
24 23 3adant3 ( ( 𝜑𝑦𝑆𝑥 = ( 𝑦𝐷 ) ) → ( 𝑆𝑦 ) ∈ 𝑆 )
25 eqid ( ( 𝑆𝑦 ) ∩ 𝐷 ) = ( ( 𝑆𝑦 ) ∩ 𝐷 )
26 20 21 24 25 elrestd ( ( 𝜑𝑦𝑆𝑥 = ( 𝑦𝐷 ) ) → ( ( 𝑆𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆t 𝐷 ) )
27 3 unieqi 𝑇 = ( 𝑆t 𝐷 )
28 27 a1i ( 𝜑 𝑇 = ( 𝑆t 𝐷 ) )
29 1 2 restuni3 ( 𝜑 ( 𝑆t 𝐷 ) = ( 𝑆𝐷 ) )
30 28 29 eqtrd ( 𝜑 𝑇 = ( 𝑆𝐷 ) )
31 30 adantr ( ( 𝜑𝑥 = ( 𝑦𝐷 ) ) → 𝑇 = ( 𝑆𝐷 ) )
32 simpr ( ( 𝜑𝑥 = ( 𝑦𝐷 ) ) → 𝑥 = ( 𝑦𝐷 ) )
33 31 32 difeq12d ( ( 𝜑𝑥 = ( 𝑦𝐷 ) ) → ( 𝑇𝑥 ) = ( ( 𝑆𝐷 ) ∖ ( 𝑦𝐷 ) ) )
34 indifdir ( ( 𝑆𝑦 ) ∩ 𝐷 ) = ( ( 𝑆𝐷 ) ∖ ( 𝑦𝐷 ) )
35 34 eqcomi ( ( 𝑆𝐷 ) ∖ ( 𝑦𝐷 ) ) = ( ( 𝑆𝑦 ) ∩ 𝐷 )
36 35 a1i ( ( 𝜑𝑥 = ( 𝑦𝐷 ) ) → ( ( 𝑆𝐷 ) ∖ ( 𝑦𝐷 ) ) = ( ( 𝑆𝑦 ) ∩ 𝐷 ) )
37 33 36 eqtrd ( ( 𝜑𝑥 = ( 𝑦𝐷 ) ) → ( 𝑇𝑥 ) = ( ( 𝑆𝑦 ) ∩ 𝐷 ) )
38 3 a1i ( ( 𝜑𝑥 = ( 𝑦𝐷 ) ) → 𝑇 = ( 𝑆t 𝐷 ) )
39 37 38 eleq12d ( ( 𝜑𝑥 = ( 𝑦𝐷 ) ) → ( ( 𝑇𝑥 ) ∈ 𝑇 ↔ ( ( 𝑆𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆t 𝐷 ) ) )
40 39 3adant2 ( ( 𝜑𝑦𝑆𝑥 = ( 𝑦𝐷 ) ) → ( ( 𝑇𝑥 ) ∈ 𝑇 ↔ ( ( 𝑆𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆t 𝐷 ) ) )
41 26 40 mpbird ( ( 𝜑𝑦𝑆𝑥 = ( 𝑦𝐷 ) ) → ( 𝑇𝑥 ) ∈ 𝑇 )
42 41 3exp ( 𝜑 → ( 𝑦𝑆 → ( 𝑥 = ( 𝑦𝐷 ) → ( 𝑇𝑥 ) ∈ 𝑇 ) ) )
43 42 rexlimdv ( 𝜑 → ( ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐷 ) → ( 𝑇𝑥 ) ∈ 𝑇 ) )
44 43 adantr ( ( 𝜑𝑥𝑇 ) → ( ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐷 ) → ( 𝑇𝑥 ) ∈ 𝑇 ) )
45 18 44 mpd ( ( 𝜑𝑥𝑇 ) → ( 𝑇𝑥 ) ∈ 𝑇 )
46 1 adantr ( ( 𝜑𝑓 : ℕ ⟶ 𝑇 ) → 𝑆 ∈ SAlg )
47 2 adantr ( ( 𝜑𝑓 : ℕ ⟶ 𝑇 ) → 𝐷𝑉 )
48 simpr ( ( 𝜑𝑓 : ℕ ⟶ 𝑇 ) → 𝑓 : ℕ ⟶ 𝑇 )
49 46 47 3 48 subsaliuncl ( ( 𝜑𝑓 : ℕ ⟶ 𝑇 ) → 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ 𝑇 )
50 5 10 11 45 49 issalnnd ( 𝜑𝑇 ∈ SAlg )