Step |
Hyp |
Ref |
Expression |
1 |
|
subsalsal.1 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
subsalsal.2 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
3 |
|
subsalsal.3 |
⊢ 𝑇 = ( 𝑆 ↾t 𝐷 ) |
4 |
3
|
ovexi |
⊢ 𝑇 ∈ V |
5 |
4
|
a1i |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
6 |
1
|
0sald |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
7 |
|
0in |
⊢ ( ∅ ∩ 𝐷 ) = ∅ |
8 |
7
|
eqcomi |
⊢ ∅ = ( ∅ ∩ 𝐷 ) |
9 |
1 2 6 8
|
elrestd |
⊢ ( 𝜑 → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
10 |
9 3
|
eleqtrrdi |
⊢ ( 𝜑 → ∅ ∈ 𝑇 ) |
11 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
12 |
|
id |
⊢ ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑇 ) |
13 |
12 3
|
eleqtrdi |
⊢ ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ) |
15 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐷 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) ) ) |
16 |
1 2 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) ) ) |
18 |
14 17
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ∈ SAlg ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → 𝑆 ∈ SAlg ) |
21 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → 𝐷 ∈ 𝑉 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
23 |
19 22
|
saldifcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ) |
25 |
|
eqid |
⊢ ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) = ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) |
26 |
20 21 24 25
|
elrestd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
27 |
3
|
unieqi |
⊢ ∪ 𝑇 = ∪ ( 𝑆 ↾t 𝐷 ) |
28 |
27
|
a1i |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ ( 𝑆 ↾t 𝐷 ) ) |
29 |
1 2
|
restuni3 |
⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐷 ) = ( ∪ 𝑆 ∩ 𝐷 ) ) |
30 |
28 29
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑇 = ( ∪ 𝑆 ∩ 𝐷 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ∪ 𝑇 = ( ∪ 𝑆 ∩ 𝐷 ) ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → 𝑥 = ( 𝑦 ∩ 𝐷 ) ) |
33 |
31 32
|
difeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ∪ 𝑇 ∖ 𝑥 ) = ( ( ∪ 𝑆 ∩ 𝐷 ) ∖ ( 𝑦 ∩ 𝐷 ) ) ) |
34 |
|
indifdir |
⊢ ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) = ( ( ∪ 𝑆 ∩ 𝐷 ) ∖ ( 𝑦 ∩ 𝐷 ) ) |
35 |
34
|
eqcomi |
⊢ ( ( ∪ 𝑆 ∩ 𝐷 ) ∖ ( 𝑦 ∩ 𝐷 ) ) = ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) |
36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ( ∪ 𝑆 ∩ 𝐷 ) ∖ ( 𝑦 ∩ 𝐷 ) ) = ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ) |
37 |
33 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ∪ 𝑇 ∖ 𝑥 ) = ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ) |
38 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → 𝑇 = ( 𝑆 ↾t 𝐷 ) ) |
39 |
37 38
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ↔ ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
40 |
39
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ↔ ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
41 |
26 40
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) |
42 |
41
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → ( 𝑥 = ( 𝑦 ∩ 𝐷 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) ) ) |
43 |
42
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) ) |
45 |
18 44
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) |
46 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑇 ) → 𝑆 ∈ SAlg ) |
47 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑇 ) → 𝐷 ∈ 𝑉 ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑇 ) → 𝑓 : ℕ ⟶ 𝑇 ) |
49 |
46 47 3 48
|
subsaliuncl |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑇 ) → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ 𝑇 ) |
50 |
5 10 11 45 49
|
issalnnd |
⊢ ( 𝜑 → 𝑇 ∈ SAlg ) |