| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsalsal.1 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 2 |
|
subsalsal.2 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
subsalsal.3 |
⊢ 𝑇 = ( 𝑆 ↾t 𝐷 ) |
| 4 |
3
|
ovexi |
⊢ 𝑇 ∈ V |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 6 |
1
|
0sald |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
| 7 |
|
0in |
⊢ ( ∅ ∩ 𝐷 ) = ∅ |
| 8 |
7
|
eqcomi |
⊢ ∅ = ( ∅ ∩ 𝐷 ) |
| 9 |
1 2 6 8
|
elrestd |
⊢ ( 𝜑 → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 10 |
9 3
|
eleqtrrdi |
⊢ ( 𝜑 → ∅ ∈ 𝑇 ) |
| 11 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
| 12 |
|
id |
⊢ ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑇 ) |
| 13 |
12 3
|
eleqtrdi |
⊢ ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 15 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐷 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) ) ) |
| 16 |
1 2 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑥 ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) ) ) |
| 18 |
14 17
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ∈ SAlg ) |
| 20 |
19
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → 𝑆 ∈ SAlg ) |
| 21 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → 𝐷 ∈ 𝑉 ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 23 |
19 22
|
saldifcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ) |
| 24 |
23
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ) |
| 25 |
|
eqid |
⊢ ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) = ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) |
| 26 |
20 21 24 25
|
elrestd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 27 |
3
|
unieqi |
⊢ ∪ 𝑇 = ∪ ( 𝑆 ↾t 𝐷 ) |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ ( 𝑆 ↾t 𝐷 ) ) |
| 29 |
1 2
|
restuni3 |
⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐷 ) = ( ∪ 𝑆 ∩ 𝐷 ) ) |
| 30 |
28 29
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑇 = ( ∪ 𝑆 ∩ 𝐷 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ∪ 𝑇 = ( ∪ 𝑆 ∩ 𝐷 ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → 𝑥 = ( 𝑦 ∩ 𝐷 ) ) |
| 33 |
31 32
|
difeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ∪ 𝑇 ∖ 𝑥 ) = ( ( ∪ 𝑆 ∩ 𝐷 ) ∖ ( 𝑦 ∩ 𝐷 ) ) ) |
| 34 |
|
indifdir |
⊢ ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) = ( ( ∪ 𝑆 ∩ 𝐷 ) ∖ ( 𝑦 ∩ 𝐷 ) ) |
| 35 |
34
|
eqcomi |
⊢ ( ( ∪ 𝑆 ∩ 𝐷 ) ∖ ( 𝑦 ∩ 𝐷 ) ) = ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) |
| 36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ( ∪ 𝑆 ∩ 𝐷 ) ∖ ( 𝑦 ∩ 𝐷 ) ) = ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ) |
| 37 |
33 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ∪ 𝑇 ∖ 𝑥 ) = ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ) |
| 38 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → 𝑇 = ( 𝑆 ↾t 𝐷 ) ) |
| 39 |
37 38
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ↔ ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
| 40 |
39
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ↔ ( ( ∪ 𝑆 ∖ 𝑦 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
| 41 |
26 40
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐷 ) ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) |
| 42 |
41
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → ( 𝑥 = ( 𝑦 ∩ 𝐷 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) ) ) |
| 43 |
42
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐷 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) ) |
| 45 |
18 44
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) |
| 46 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑇 ) → 𝑆 ∈ SAlg ) |
| 47 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑇 ) → 𝐷 ∈ 𝑉 ) |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑇 ) → 𝑓 : ℕ ⟶ 𝑇 ) |
| 49 |
46 47 3 48
|
subsaliuncl |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ ⟶ 𝑇 ) → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ 𝑇 ) |
| 50 |
5 10 11 45 49
|
issalnnd |
⊢ ( 𝜑 → 𝑇 ∈ SAlg ) |